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Background



Matrix Dyson Equation

Given H € R™" 3 self-adjoint matrix, consider the matrix
Dyson equation (MDE)

(EH — Ez[(H — EH)M(H — EH)] —zI))M = I,

:=8(M) (superoperator)

where 3[z] > 0 and S[M] > 0.

2/25



Properties of the MDE

- There exists a unique analytic solution M to the MDE
[HFS07]
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Properties of the MDE

- There exists a unique analytic solution M to the MDE
[HFS07]

- [IM(2)|l < 1/Sz], Stieltjes transform representation, etc.

- Under some assumptions, if the entries of H are “weakly
correlated”, (H — zl,)~" =~ M(z2) in the sense of isotropic
and averaged local laws

- By “weakly correlated”, | mean a generalization of Wigner
matrices

- If H is Wigner, then S(M) = J/
- If H is Wishart, then S(M) ~ J/
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How can we use the matrix Dyson equation framework to
study, for instance, Wishart matrices?
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Linearization trick

Let p be a self-adjoint n by n polynomial expression in
C(X1,...,Xg). Then, there exists a linearization
L e Ccntd)x(n+d) gych that

Lis linearin Xy, Xo,...,Xp

_ In O
(L=2N)Z;<n = (P —2In)~" where A = [5 O]

L= [A B ] with Q invertible.
B Q

Linearizations are also called (affine) pencils or realizations.
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- (Gram matrix)
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- (Gram matrix)

-1
2 X
z — (X" — 1)~
x|,

- (Sample covariance matrix)
{ zI 0 0 W
o 0 Y -l ’
| ‘, | = rvexs — 21y
) — 0 |
x 3o o

1,1
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- (Gram matrix)
—1
-zl X
‘ — XX+ —21)”"
X* -l
1,1
- (Sample covariance matrix)

-zl 0 0 X
0 0 Y -

= (XYY*x* —z)!
0 Y* —I

{X“ 0 /J = (XY* + YX* —zI)”"
1,1
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Linearization algorithmically

L, Yrgel viC 0 0o 0 0 0
_evi< ' VAW
et I, 0 0 -0 0 0 0
0 0 L, -S 0 0 0 0 0
e 0 - 0 I, 0 0 Z—v,;, 0 0
Q 0 0 0 0 L, -%¥2 0 0 0
- V,XT 0 0 0 0 I, 0 0 0
0 0 0 0 0 0 L, -¥V* 0
X
0 0 0 0 0 0 0 L, -7
0 0 0 0 0 0 0 0 I
(S171)

Figure 1: Linearization obtained algorithmically. Source: “Anisotropic
random feature regression in high dimensions” by Mel and
Pennington
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Pseudo-resolvents & MDE

The linearization trick leads to the study of pseudo-resolvents
(L—zN).

The matrix Dyson equation framework has been adapted to
analyze pseudo-resolvents:

- On a global scale (Anderson '13)

- On a local scale (Erdés, Kriiger, and Nemish "18)

Those work used free probability, and apply to linearizations
with generalized Wigner and/or non-symmetric random
matrices.
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1. Extend the matrix Dyson equation framework to derive
anisotropic global laws for pseudo-resolvents of
linearizations with arbitrary correlation structure

2. Present motivating example from machine learning
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Framework




Settings

We are given

BT
Q

- A € R"™" self-adjoint, B € RY%"
- Q € R4 jnvertible, self-adjoint and deterministic

/\:IHO
0 0

- A spectral parameter z € C with $[z] > 0

. L A
- A linearization L = [B € R4

We want to find a deterministic equivalent (L — zA)™"
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Matrix Dyson equation for (correlated) linearizations

Consider the MDE
(EL — S(M) — ZAM = I,
with
- superoperator S(M) := E[(L — EL)M(L — EL)] — S(M)

- - 0 E[(B —EB) M, 1(B — EB)"]
S = E[(B — EB)M1 (B — EB)] 0
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Existence and uniqueness

Because the spectral parameter does not span the entire
diagonal, existence of a solution to the MDE is not trivial.
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Existence and uniqueness

Because the spectral parameter does not span the entire
diagonal, existence of a solution to the MDE is not trivial.

Define the admissible set

o ={W e C™ : S[W)]_] - 0, S[W] = 0}

Theorem (L.V., Paquette "23)
There exists a unique analytic M : Hl — o/ that solves the MDE.

This M(z) is the candidate deterministic equivalent for
(L—zN)"".
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Regularized matrix Dyson equation

- Problem: It is difficult to work directly with
(EL — S(M) —zAM = |,
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Regularized matrix Dyson equation

- Problem: It is difficult to work directly with
(EL — S(M) —zAM = |,

- Solution: For every 7 > 0, define the regularized matrix
Dyson equation (RMDE)

(EL — SMT) —zA —irl)MT) = |,

and an admissible set A, = {W € C*>* : I[W]>~0}.
- Unique analytic M() : H — A, solution to the RMDE
« W (EL — S(W) — zA — itl,)~" contraction in
CRF-pseudometric
- We define lim,_,o M()(2) = M(2)
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Regularized pseudo-resolvent

The expected regularized pseudo-resolvent almost solves the
RMDE up to an additive perturbation D();

(EL— S(E(L —zA — i7) ") — zA — irl)E(L —zZA— iT) ™ = I, + D(")
with

D) =E [(EL— L —S(E(L —2zA —itl)™")) (L —zA = iTle) "] .
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Stability

Theorem (L.-V., Paquette '23)

If
- IMD(2) = M(2)| Z=2 0 uniformly in ¢
- [|S|I, IEL|| and

l—o0

- IDM) == 0 for every T > 0

’

then |M(z) — E(L — zA)~"|| 2225 0 for every z € HL

(L—zN)"" =~ E(L—zA)""

E(L — zA — irly)~"
&

Q

M(2) M()(z)
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Assumption: [|[M™)(z) — M(z)|| =% 0 uniformly in ¢

- We need [M™(z) — M(z)|| Z=% 0 uniformly in ¢
- Ensures stability of the MDE

- When L has Wigner blocks, we can use free semicircular
variables to construct a dimension independent
representation of M and M(™) [And13; EKN18; FKN23]
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l—r00

Assumption: ||D™|| —= 0 for every 7 > 0

Theorem (L.-V., Paquette 23’)
If L=L(g) =C(g) + EL for some g ~ N (0, I,), then

IDD < cr'Vex+ 7728 +
with

© g S ((L(g) — zA — iTly)™") is A-Lipschitz with respect to
the operator norm
- S is the part that we removed from S

relates to how close L is to satisfying a matrix
Stein’s lemma

17/25



Application: Random features




- Dataset {(x;,¥;)}/7=" with x; € R™ and y; € R
- Want to learn relation between x; and y; using

min ||y — Aw||* + §||w|]”
weRd

- A=n"10(XW)

- W e R™*% s a matrix of i.i.d. Gaussians
- o Lipschitz functions

- ridge parameter § > 0

+EA=0

- Explicit solution w = AT(AAT + 61, )7y
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Why study random features?
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Figure 2: Average and standard deviation over 10 runs of even/odd
classification of MNIST using a random feature model. ny.,j, = 6000,
Ntest = 10000 and § = 0.01. 19/25



Random features as a null model

Random features serves as a toy model for neural networks

- Double/multiple descents (Mei and Montanari '19)
- Implicit regularization (Jacot et al. '20)
- Universality (Hu and Lu '20)
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Test error

Given other dataset {(%, )}/ with % € R™ and §; € R, the
test error is

Etest == [V — AW||” = [ — AAT(AAT + 61, )"y

with //4\ = ﬂ_%o'()?\/\/) € RNMestxd.
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Linearization

6lntrain A Ontrain XNtest Ontrain XNtest
AT —ly 0 AT
xd dX Ntes
L= test = Rﬂxé_
Ontestxntrain Ontest xd Ontestxntest _Int.est
Onmmxnmmﬂ A _Jﬂmm OnmmXﬂmm

Taking A := BlockDiag{/,, ... +d> 02t x2ncess }» WE fOrm the
pseudo-resolvent (L — zA)~" and we get

(L—2N)5] = (1+2)"BAT (14 2) 78T + (6 = 2)lnpyy,)
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Theorem (L.-V., Paquette '23)

Assume that Neain, d, Neest, No o N and E[||A||“], E[||A|l“] are
bounded. Let « be the unique non-positive real number
satisfying

o = — (1 + tr (KAAT((SI”Uam - dO[KAAT)_‘I))_‘I € RSO

and denote M = (4l — daKy,r)~" as well as

Ntrain

B = o’ tr (KmT + dakz My, + 5M)KAZT) € R>o.

1 1
1— [|[VdaK2,-MKZ,. |12

1
.S, £l ~
Then, Egest — dﬁHKXATMyHZ + ||[dakz,rMy + V%

Here, Kaar, Kz,r @and Kzr are covariance matrices. 23/25



Gaussian equivalence theorem

As a consequence, we may replace a random features model
by an equivalent surrogate Gaussian matrix with matching
covariance.
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Numerical simulations
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Figure 3: Eies; VS the deterministic approximation for various odd
activation functions with different size of hidden layers d and ridge
parameter 4. Left: Error function activation (o(x) = erf(x)); Right: Sign
activation (o(x) = sign(x)).
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Addendum



Stability operator

The stability operator is defined as

L:WeC™ = W —MS(W)M.
7—0

It is related to our assumption ||M(z) — M(D(z)|| == 0
uniformly in £ because

L(9-M(2)) = (M(2))*.



Expansion of test error

Etest := ”y - 26”2
Zy AAT (AAT + 6 ntra/n) B y

(1)
) TAATAAT(AAT + 61, )Ty

()

+yT (AAT + 61

Ntrain

+[IyII?



Superoperator

The linearization presented for the motivating example huge,
but it has a simple correlation structure:

tr(Mo)XXT 0 0 tr(Myo)XXT
0 p(M)/d 0 0
0 0 0 0
tr(Mp)XXT 0 0 tr(Myo)XXT

5(1)(/\/1) =

where p(M) := tr(XX"M1 1 + XXTMy 1 + XXMy 4 4+ XXMy 1)



Applying our framework

1. There is a unique solution M to the associated MDE

((6 = 2)lngyasn — tr(M22)Kpar) ™ 0 = tr(Mo2)M1K e 0

M) = 0 —(14 2z + tr(KparM11)) g 0 0
—tr(M2,2)Kz,rMi 0 (tr(M2.2))2KaurMr 1K ar + tr(Mo2)Kazr =l |

0 0 —Ingest 0

2. We can control |M()(z) — M(z)|| using the structure of M
3. To show ||D(7)|| — 0, we use
IDDN < cr™™Ve A +77% |8 + AL 7))
-

o ~  ——

O(£_1/2) LOO

It only remains to take z — 0...



First deterministic equivalent

Lemma
Under some boundedness assumptions,

tr (U(L™" = M(0))) — 0

n—o0

for every U € C*¢ with ||U]]« < 1.



Second deterministic equivalent

- Now, we want to find a deterministic equivalent for
(AAT + 81y, )T AATAAT(AAT + 61, )"
- This is the “square” of the previous expression

- We can use contour integral trick along with stability of
M(T)

- We can extract more information about M("), which
already used to find the first deterministic equivalent, and
use a contour integral trick to find the second
deterministic equivalent



Numerical simulations

We only have to compute the scalar a:

Let ap € R.o and consider the iterates

Qg1 = — (14 tr (Kuar(0lngpasn — Uf?dKAAT)J))i1 :

Then, a = limy_, Q.
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