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Background



Matrix Dyson Equation

Given H ∈ Rn×n a self-adjoint matrix, consider the matrix
Dyson equation (MDE)

(EH− EH̃[(H̃− EH)M(H̃− EH)]︸ ︷︷ ︸
:=S(M) (superoperator)

−zIn)M = In

where =[z] > 0 and =[M] � 0.
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Properties of the MDE

• There exists a unique analytic solution M to the MDE
[HFS07]

• ‖M(z)‖ ≤ 1/=[z], Stieltjes transform representation, etc.
• Under some assumptions, if the entries of H are “weakly
correlated”, (H− zIn)−1 ≈ M(z) in the sense of isotropic
and averaged local laws

• By “weakly correlated”, I mean a generalization of Wigner
matrices

• If H is Wigner, then S(M) ≈ c tr(M)
n I

• If H is Wishart, then S(M) ≈ c tr(M)
n I
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How can we use the matrix Dyson equation framework to
study, for instance, Wishart matrices?
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Linearization trick

Linearization trick (Belinschi, Mai, and Speicher ’13)
Let p be a self-adjoint n by n polynomial expression in
C〈X1, . . . , Xk〉. Then, there exists a linearization
L ∈ C(n+d)×(n+d) such that

1. L is linear in X1, X2, . . . , Xk

2. (L− zΛ)−11≤i,j≤n = (p− zIn)−1 where Λ =

[
In 0
0 0

]

3. L =
[
A B∗

B Q

]
with Q invertible.

Linearizations are also called (affine) pencils or realizations.
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Examples

• (Gram matrix) [
−zI X
X∗ −I

]−1

1,1

= (XX∗ − zI)−1

• (Sample covariance matrix)
−zI 0 0 X
0 0 Y −I
0 Y∗ −I 0
X∗ −I 0 0


−1

1,1

= (XYY∗X∗ − zI)−1

• (Anticommutator)−zI X Y
X∗ 0 −I
Y∗ −I 0


−1

1,1

= (XY∗ + YX∗ − zI)−1
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Linearization algorithmically

Figure 1: Linearization obtained algorithmically. Source: “Anisotropic
random feature regression in high dimensions” by Mel and
Pennington

7/25



Pseudo-resolvents & MDE

The linearization trick leads to the study of pseudo-resolvents
(L− zΛ)−1.

The matrix Dyson equation framework has been adapted to
analyze pseudo-resolvents:

• On a global scale (Anderson ’13)
• On a local scale (Erdős, Krüger, and Nemish ’18)

Those work used free probability, and apply to linearizations
with generalized Wigner and/or non-symmetric random
matrices.
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Our goal

1. Extend the matrix Dyson equation framework to derive
anisotropic global laws for pseudo-resolvents of
linearizations with arbitrary correlation structure

2. Present motivating example from machine learning
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Framework



Settings

We are given

• A linearization L =
[
A BT

B Q

]
∈ R`×`,

• A ∈ Rn×n self-adjoint, B ∈ Rd×n

• Q ∈ Rd×d invertible, self-adjoint and deterministic

• Λ =

[
In 0
0 0

]
• A spectral parameter z ∈ C with =[z] > 0

We want to find a deterministic equivalent (L− zΛ)−1
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Matrix Dyson equation for (correlated) linearizations

Consider the MDE

(EL− S(M)− zΛ)M = I`

with

• superoperator S(M) := E[(L− EL)M(L− EL)]− S̃(M)

• S̃(M) =
[

0 E[(B− EB)TM2,1(B− EB)T ]
E[(B− EB)M1,2(B− EB)] 0

]
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Existence and uniqueness

Because the spectral parameter does not span the entire
diagonal, existence of a solution to the MDE is not trivial.

Define the admissible set

A = {W ∈ C`×` : =[(W)ni,j=1] � 0, =[W] � 0}

Theorem (L.V., Paquette ’23)
There exists a unique analytic M : H 7→ A that solves the MDE.

This M(z) is the candidate deterministic equivalent for
(L− zΛ)−1.
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Regularized matrix Dyson equation

• Problem: It is difficult to work directly with
(EL− S(M)− zΛ)M = I`

• Solution: For every τ > 0, define the regularized matrix
Dyson equation (RMDE)

(EL− S(M(τ))− zΛ− iτ I`)M(τ) = I`

and an admissible set A+ = {W ∈ C`×` : =[W]�0}.

• Unique analytic M(τ) : H 7→ A+ solution to the RMDE
• W 7→ (EL− S(W)− zΛ− iτ I`)−1 contraction in
CRF-pseudometric

• We define limτ→0M(τ)(z) = M(z)
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Regularized pseudo-resolvent

The expected regularized pseudo-resolvent almost solves the
RMDE up to an additive perturbation D(τ):

(EL−S(E(L− zΛ− iτ)−1)− zΛ− iτ I`)E(L− zΛ− iτ)−1 = I` +D(τ)

with

D(τ) = E
[(
EL− L− S(E(L− zΛ− iτ I`)−1)

)
(L− zΛ− iτ I`)−1

]
.
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Stability

Theorem (L.-V., Paquette ’23)
If

• ‖M(τ)(z)−M(z)‖ τ→0−−−→ 0 uniformly in `

• ‖S‖, ‖EL‖ and E‖(L− zΛ)−1‖2 are bounded.
• ‖D(τ)‖ `→∞−−−→ 0 for every τ > 0

then ‖M(z)− E(L− zΛ)−1‖ `→∞−−−→ 0 for every z ∈ H.

(L− zΛ)−1 E(L− zΛ)−1

E(L− zΛ− iτ I`)−1

M(τ)(z)M(z)

≈ ≈

≈≈
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Assumption: ‖M(τ)(z)−M(z)‖ τ→0−−→ 0 uniformly in `

• We need ‖M(τ)(z)−M(z)‖ τ→0−−−→ 0 uniformly in `

• Ensures stability of the MDE
• When L has Wigner blocks, we can use free semicircular
variables to construct a dimension independent
representation of M and M(τ) [And13; EKN18; FKN23]
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Assumption: ‖D(τ)‖ `→∞−−−→ 0 for every τ > 0

Theorem (L.-V., Paquette 23’)
If L ≡ L(g) = C(g) + EL for some g ∼ N (0, Iγ), then

‖D(τ)‖ ≤ cτ−1
√
`λ+ τ−2‖S̃‖+ ‖∆(L, τ)‖

with

• g 7→ S
(
(L(g)− zΛ− iτ I`)−1

)
is λ-Lipschitz with respect to

the operator norm
• S̃ is the part that we removed from S
• ‖∆(L, τ)‖ relates to how close L is to satisfying a matrix
Stein’s lemma
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Application: Random features



Setup

• Dataset {(xj, yj)}
ntrain
j=1 with xj ∈ Rn0 and yj ∈ R

• Want to learn relation between xj and yj using

min
w∈Rd

‖y − Aw‖2 + δ‖w‖2

• A = n− 1
2σ(XW)

• W ∈ Rn0×d is a matrix of i.i.d. Gaussians
• σ Lipschitz functions
• ridge parameter δ > 0
• EA = 0

• Explicit solution w = AT(AAT + δIntrain)−1y
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Why study random features?

Figure 2: Average and standard deviation over 10 runs of even/odd
classification of MNIST using a random feature model. ntrain = 6000,
ntest = 10000 and δ = 0.01. 19/25



Random features as a null model

Random features serves as a toy model for neural networks

• Double/multiple descents (Mei and Montanari ’19)
• Implicit regularization (Jacot et al. ’20)
• Universality (Hu and Lu ’20)
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Test error

Given other dataset {(x̂j, ŷj)}ntestj=1 with x̂j ∈ Rn0 and ŷj ∈ R, the
test error is

Etest := ‖ŷ − Âw‖2 = ‖ŷ − ÂAT(AAT + δIntrain)
−1y‖2

with Â = n−
1
2σ(X̂W) ∈ Rntest×d.
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Linearization

L =


δIntrain A 0ntrain×ntest 0ntrain×ntest

AT −Id×d 0d×ntest ÂT

0ntest×ntrain 0ntest×d 0ntest×ntest −Intest

0ntest×ntrain Â −Intest 0ntest×ntest

 ∈ R`×`.

Taking Λ := BlockDiag{Intrain+d, 02ntest×2ntest}, we form the
pseudo-resolvent (L− zΛ)−1 and we get

(L− zΛ)−13,1 = (1+ z)−1ÂAT
(
(1+ z)−1AAT + (δ − z)Intrain

)−1
.
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Main result

Theorem (L.-V., Paquette ’23)

Assume that ntrain,d,ntest,n0 ∝ n and E[‖A‖4],E[‖Â‖4] are
bounded. Let α be the unique non-positive real number
satisfying

α = −
(
1+ tr

(
KAAT (δIntrain − dαKAAT )−1

))−1 ∈ R≤0

and denote M = (δIntrain − dαKAAT )−1 as well as

β =
α2 tr

(
KÂÂT + dαKÂATM(Intrain + δM)KAÂT

)
1− ‖

√
dαK

1
2
AATMK

1
2
AAT‖

2
F

∈ R≥0.

Then, Etest
a.s.−−−→
n→∞

dβ‖K
1
2
AATMy‖

2 + ‖dαKÂATMy + ỹ‖2.

Here, KAAT , KÂAT and KÂÂT are covariance matrices. 23/25



Gaussian equivalence theorem

As a consequence, we may replace a random features model
by an equivalent surrogate Gaussian matrix with matching

covariance.
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Numerical simulations

Figure 3: Etest vs the deterministic approximation for various odd
activation functions with different size of hidden layers d and ridge
parameter δ. Left: Error function activation (σ(x) = erf(x)); Right: Sign
activation (σ(x) = sign(x)).
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Addendum



Stability operator

The stability operator is defined as

L : W ∈ C`×` 7→ W −MS(W)M.

It is related to our assumption ‖M(z)−M(τ)(z)‖ τ→0−−−→ 0
uniformly in ` because

L(∂iτM(z)) = (M(z))2.



Expansion of test error

Etest := ‖ỹ − Ãβ‖2

= −2ỹT ÃAT
(
AAT + δIntrain

)−1︸ ︷︷ ︸
(1)

y

+ yT (AAT + δIntrain)
−1AÃT ÃAT(AAT + δIntrain)

−1︸ ︷︷ ︸
(2)

y

+ ‖ỹ‖2



Superoperator

The linearization presented for the motivating example huge,
but it has a simple correlation structure:

S(1)(M) =


tr(M2,2)XXT 0 0 tr(M2,2)XX̃T

0 ρ(M)Id 0 0
0 0 0 0

tr(M2,2)X̃XT 0 0 tr(M2,2)X̃X̃T


where ρ(M) := tr(XXTM1,1 + XX̃TM4,1 + X̃XTM1,4 + X̃X̃TM4,4)



Applying our framework

1. There is a unique solution M to the associated MDE

M(z) =


((δ − z)Intrain − tr(M2,2)KAAT )−1 0 − tr(M2,2)M1,1KAÂT 0

0 −(1+ z + tr(KAATM1,1))−1Id 0 0
− tr(M2,2)KÂATM1,1 0 (tr(M2,2))2KÂATM1,1KAÂT + tr(M2,2)KÂÂT −Intest

0 0 −Intest 0

 .

2. We can control ‖M(τ)(z)−M(z)‖ using the structure of M
3. To show ‖D(τ)‖ → 0, we use

‖D(τ)‖ ≤ cτ−1
√
` λ︸︷︷︸
O(`−1)

+τ−2 ‖S̃‖︸︷︷︸
O(`−1/2)

+ ‖∆(L, τ)‖︸ ︷︷ ︸
LOO

It only remains to take z → 0…



First deterministic equivalent

Lemma
Under some boundedness assumptions,

tr
(
U(L−1 −M(0))

) a.s.−−−→
n→∞

0

for every U ∈ C`×` with ‖U‖∗ ≤ 1.



Second deterministic equivalent

• Now, we want to find a deterministic equivalent for
(AAT + δIntrain)−1AÃT ÃAT(AAT + δIntrain)−1

• This is the “square” of the previous expression
• We can use contour integral trick along with stability of
M(τ)

• We can extract more information about M(τ), which
already used to find the first deterministic equivalent, and
use a contour integral trick to find the second
deterministic equivalent



Numerical simulations

We only have to compute the scalar a:

Numerically solving for a
Let a0 ∈ R<0 and consider the iterates

ak+1 = −
(
1+ tr

(
KAAT (δIntrain − akdKAAT )−1

))−1
.

Then, a = limk→∞ ak.
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