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Abstract: This paper develops some theory of the matrix Dyson equation (MDE) for
correlated linearizations and uses it to solve a problem on asymptotic deterministic equiv-
alent for the test error in random features regression. The theory developed for the
correlated MDE includes existence-uniqueness, spectral support bounds, and stability
properties of the MDE. This theory is new for constructing deterministic equivalents for
pseudoresolvents of a class of correlated linear pencils. In the application, this theory is
used to give a deterministic equivalent of the test error in random features ridge regres-
sion, in a proportional scaling regime, wherein we have conditioned on both training and
test datasets.
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1. Introduction

Contemporary artificial neural networks have found widespread applications in diverse do-
mains. A notable trend in modern neural network design is the increasing size and complexity
of these models. In practical applications, there is a prevalent use of highly overparametrized
models. These overparametrized models exhibit exceptional capacity, showcasing the ability
to perfectly fit the training data, even in scenarios where the labels are pure noise [ZBH+21]
and nonetheless generalize well. Despite the remarkable practical success of neural networks,
a considerable gap exists between theoretical understanding and real-world performance in
machine learning. Neural networks pose unique challenges for analysis due to two key factors.
Firstly, the high dimensionality of these models often leads to behaviors that defy conven-
tional statistical knowledge. Secondly, the presence of non-linear activation functions, which
are known to enhance the expressive capacity of neural networks, further complicates analysis.

In recent years, random matrix theory has been used to provide valuable insights into the
behavior of neural networks and other machine learning models. A notable line of research
at the confluence of random matrix theory and neural networks combines the linear pencil
method with operator-valued free probability to analyze the training and test errors of simple
machine learning models [MP22, ALP19, AP20a, AP20b, TAP21b, TAP21a].

Beyond the linear model, the random features model introduced in [RR07] stands out
as one of the simplest models with significant expressive power. In contrast to the linear
model, the random features model incorporates a non-linear activation function and can
be overparametrized. Despite its simplicity, the random features model provides a math-
ematically tractable framework that proves instrumental in studying phenomena observed
in real-life machine learning models, such as multiple descent [MM22, AP20b] and implicit
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generalization [Cho22, JcS+20]. Extensive studies have delved into the training and test er-
ror of ridge regression with random features in high dimensions [dSB21, GLK+20, MM22,
MMM22, HMRT22, MP22, TAP21a, TAP21b, ALP19]. Notably, the non-linear random fea-
tures model is connected to a simpler linear Gaussian model through a universality phe-
nomenon [GLK+20, GLR+22, MS22, HL23].

The concept of linearization, or linear pencil method, entails representing rational functions
of random matrices as blocks of inverses of larger random matrices which depend linearly on its
random matrix inputs. These linearizations possess simpler correlation structures, rendering
them more amenable to certain types of analysis. Beyond their application in analyzing the
training and test error of neural networks, linearizations have been extensively studied in
the context of random matrix theory and free probability [HMS18, FOBS06, EKN20, HT05,
And13, BMS17, HMV06]. This exploration naturally leads to the study of pseudo-resolvents,
or generalized resolvents. Pseudo-resolvents are inherently more challenging to study than
resolvents due to the absence of a spectral parameter spanning the entire diagonal. Nonetheless,
one effective approach to study pseudo-resolvent involves analyzing a fixed-point equation
known as the matrix Dyson equation for linearizations [And13, EKN20, FKN23].

1.1. Main contributions

In this work, we introduce an extension of the matrix Dyson equation (MDE) framework tai-
lored specifically for linearizations (in particular those with correlated blocks – see Section 2.2
for further discussion on how this relates to existing MDE theory). Within this framework,
we derive an anisotropic global law for a broad class of pseudo-resolvents with general cor-
relation structures. Our approach provides a systematic method to construct a deterministic
equivalent as the solution of a matrix fixed-point equation. By employing a linearization trick,
our methodology becomes a versatile tool for finding deterministic equivalents for rational ex-
pressions involving random matrices. More generally, we further develop the MDE framework,
offering tools that we believe can be applied to solve various other problems in this domain.

We then apply our framework to derive an asymptotically exact representation for the empir-
ical test error of random features ridge regression. Specifically, we confirm [LLC18, Conjecture
1], with the additional assumption that the norm of the training and test random features
matrices has bounded fourth moments. As a consequence, we establish a general Gaussian
equivalence principle for the empirical test error of random feature ridge regression.

1.2. Notation

We adhere to the following conventions throughout our work. Lowercase letters (e.g., v) repre-
sent real or complex scalars or vectors, while uppercase letters (e.g., M) denote real or complex
matrices. Calligraphic letters are utilized for denoting sets (e.g., M ) or operators on the space
of complex matrices (e.g., S). The symbol H refers to the upper half of the complex plane.
We use R≥0 to represent the set of non-negative real numbers and R>0 to represent the set of
positive real numbers.

When considering a matrix M ∈ Cℓ×ℓ or an operator on the space of ℓ × ℓ matrices, we
often employ the blockwise representation:

M =

[
M1,1 M1,2

M2,1 M2,2

]
.
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Here, M1,1 ∈ Cn×n, M1,2 ∈ Cn×d, M2,1 ∈ Cd×n, and M2,2 ∈ Cd×d.
Given a complex matrixM , we denote its real transpose byMT and the conjugate transpose

by M∗. When dealing with matrix sub-blocks, M∗
i,j = (Mi,j)

∗ denotes the conjugate transpose
of the (i, j) sub-block of M .

We use ∥ · ∥ to represent the standard Euclidean norm when applied to a vector and the
operator norm when applied to either matrices or complex matrix-valued functions. Addition-
ally, we employ ∥ · ∥F to denote the Frobenius norm and ∥ · ∥∗ for the nuclear norm. The trace
of a matrix is denoted by tr.

1.3. Organization

The paper is structured as follows: we present the primary result concerning the asymptotic
empirical test error of random feature ridge regression in the first section. This section also
includes a concise discussion of the theorem and its implications. We then give in Section 2.2 a
discussion of the related work to this main theorem, both from a method and application per-
spective. In Section 3, we introduce a mathematical framework designed to derive anisotropic
global laws for general pseudo-resolvents. The main aspects of this framework are presented
in this Section 3, with the proofs and more in-depth discussions deferred to the appendices.
Finally, in Section 4 we apply our framework to establish and prove the main result. Additional
supporting details are in Section B.

2. Main result

Consider a supervised training problem with a labeled dataset D = {(xj , yj)}ntrain
j=1 with xj ∈

Rn0 and yj ∈ R for every j ∈ {1, 2, . . . , ntrain}. For conciseness, let X ∈ Rntrain×n0 be the
matrix with jth rows corresponding to xT

j and y be the vectors of labels. We wish to learn
a relation between the inputs xj and the outputs yj by minimizing the ℓ2-regularized norm-
squared loss

min
w∈Rd

∥y −Aw∥2 + δ∥w∥2 (1)

where A = n− 1
2σ(XW ) ∈ Rntrain×d for some random matrix W ∈ Rn0×d, some ridge param-

eter δ ∈ R>0 and a λσ-Lipschitz activation function σ. Following the setup of [LLC18], we
will assume that W = φ(Z) for some Z ∈ Rn0×d with independent standard normal entries
and φ a λφ-Lipschitz function. The Lipschitz constants λσ and λφ should be independent of
the dimension of the problem in the sense that, as n → ∞ with ntrain ∝ ntest ∝ n0 ∝ d,
lim supn→∞(λφ ∨λσ) < ∞. In other words, we are fitting a random features model using ridge
regression.

The minimization problem in (1) admits the closed form solution w = AT (AAT+δIntrain
)−1y

which is called the ridge estimator. Given another labeled dataset D̂ = {(x̂j , ŷj)}ntest
j=1 , we can

compute the empirical test error, or out-of-sample error, using the squared norm of the residuals

Etest := ∥ŷ − Âw∥2 = ∥ŷ − ÂAT (AAT + δIntrain)
−1y∥2 (2)

with Â = n− 1
2σ(X̂W ) ∈ Rntest×d. We ask that lim supn→∞ max{∥X∥, ∥X̂∥} < ∞ and similarly

for the label vectors y and ŷ.
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Fig 1. Etest vs the deterministic approximation for various odd activation functions with different sizes of
hidden layers d and ridge parameter δ. Left: Error function activation (σ(x) = erf(x)); Right: Sign activation
(σ(x) = sign(x)).

As it is often the case in random matrix theory, we expect that a law of large number
will take effect and that the test error Etest will concentrate around a deterministic quantity
depending on the first and second moments of A and Â. Consequently, we will assume that
{(aTj , âTj )T }dj=1, representing the columns of A and Â, are i.i.d. random vectors with

E[(aT1 , âT1 )T ] = 0 and E[(aT1 , âT1 )T (aT1 , âT1 )] =
[
KAAT KAÂT

KÂAT KÂÂT

]
,

where we emphasize the expectation is only with respect to the randomness in W . Here, KAAT ,
KAÂT , KÂAT , and KÂÂT encode the covariance between the entries of A and Â. We obtain
the following result which verifies [LLC18, Conjecture 1] under an additional boundedness
assumption.

Theorem 2.1. Suppose that ntrain, d, ntest, n0 ∝ n and lim supn→∞ max{E[∥A∥4],E[∥Â∥4]} <
∞. Let α be the unique non-positive real number satisfying

α = −(1 + tr(KAAT (δIntrain
− dαKAAT )−1))−1 ∈ R≤0

and denote M = (δIntrain
− dαKAAT )−1 as well as

β =
α2 tr(KÂÂT + dαKÂATM(Intrain

+ δM)KAÂT )

1− ∥
√
dαK

1
2

AATMK
1
2

AAT ∥2F
∈ R≥0.

Then, dβ∥K
1
2

AATMy∥2 + ∥dαKÂATMy + ŷ∥2 − Etest
a.s.−−−−→

n→∞
0.

We prove Theorem 2.1 in Section 4.

2.1. Discussion

Let us briefly discuss some aspects regarding Theorem 2.1.

2.1.1. Behaviour of denominator

While not obvious at first, we show in Lemma 4.6 that 1− ∥
√
dαK

1/2

AATMK
1/2

AAT ∥2F is positive
and bounded away from 0 as n → ∞ in the setting of Theorem 2.1. This implies that β, and
therefore Etest, is well-behaved in the proportional limit.
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2.1.2. Numerical result

Concerning numerical simulations, Theorem 2.1 indicates that to compute an asymptotic de-
terministic approximation for Etest, it suffices to solve a single scalar fixed-point equation. In
particular, we demonstrate in Lemma 4.8 that the iterates {αk}k∈N0

obtained by iterating

αk+1 = −
(
1 + tr

(
KAAT (δIntrain − αkdKAAT )−1

))−1

for every k ∈ N with arbitrary α0 ∈ R≤0 converge to α as k → ∞. Moreover, when φ
is the identity, the kernel matrices KAAT , KAÂT , and KÂÂT can be efficiently computed
using [LLC18, Table 1]. We employ these techniques to generate Figure 1. The corresponding
code is available online.

2.1.3. Relation to kernel regression

The term ∥dαKÂATMy+ ŷ∥2 = ∥ŷ− dKÂAT (dKAAT +(−δ/α)Intrain
)−1y∥2 in the asymptotic

expression for the test error corresponds precisely to the norm squared test error of kernel
ridge regression with ridge parameter −δ/α ∈ R>0. This is reminiscent of [JcS+20] and the
generalization in [Cho22], and is related to the implicit regularization of the random features
model. In fact, the proof of Theorem 2.1 recovers both of those results.

2.1.4. Boundedness assumption

The conditions lim supn→∞ E[∥A∥4] < ∞ and lim supn→∞ E[∥Â∥4] < ∞ are satisfied in sce-
narios where the data matrices exhibit a form of approximate orthogonality, as discussed
in [FW20], or when the data matrix consists of concentrated random vectors, as described
in [LCM21, Assumption 2]. Importantly, these assumptions encompass cases where the data
matrices are independent and comprised of i.i.d. standard normal entries, a setting that has
been widely studied.

We also note that extensions of Theorem 2.1 to multiple layers (which we do not pursue),

are reduced to establishing the norm-control on the kernels AAT and ÂÂT .

2.2. Related work

In this section, we contextualize our results within the existing literature.

2.2.1. Random features

The random features model of [RR07] has garnered significant attention in scientific research
and has proven to be a successful benchmark for studying the behavior of more intricate
machine learning models. This model can be viewed as a two-layer neural network, where the
first layer is frozen at random initialization, and only the second layer is trained.

The random features model has been extensively studied in various settings. The version
with linear activation functions has garnered significant attention [WX20, MG21]. With non-
linear activation functions, previous research has delved into the test error of random features
trained using kernel regression under a student-teacher model, with data samples drawn from

https://colab.research.google.com/drive/1Z6b42j9OQCN_OW1oqJvJFYgSEQNgEiaB?usp=sharing
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an isotropic distribution [AP20b]. Similarly, the test error of random features trained with
ridge regression has been investigated under similar settings, employing both non-rigorous
replica methods [GLK+20] and rigorous analyses [MM22, MMM22, ALP19]. These investi-
gations have been extended to scenarios involving anisotropic data [HMRT22, MP22] and
covariate shift [TAP21a, TAP21b]. Our study diverges from these works by focusing on the
empirical test error of random features ridge regression, without assuming specific data models
or distributions beyond some boundedness conditions.

Our main result regarding the test error of random features ridge regression shares simi-
larities with the work of [LLC18], who established an asymptotically exact expression for the
training error of random features ridge regression [LLC18]. The authors conjectured that our
main result (stated in Theorem 2.1) holds without the additional conditions imposing bounded
fourth moments for the norm of the random features matrices. The important paper [LCM21]
resolves this conjecture in the special case of random Fourier features. Both [LCM21, LLC18]
employ leave-one-out techniques and concentration of measure arguments in their approaches.
Although we also utilize a leave-one-out argument to establish universality, our overall ap-
proach differs fundamentally, providing flexibility for addressing more complex scenarios where
leave-one-out approaches may not be as straightforward to apply.

2.2.2. Conjugate kernel

The conjugate kernel, a concept inherently tied to the random features model, has been a
subject of study in the realm of random matrix theory. Previous works, such as [PW17, BP21],
derive a deterministic equivalent for the random feature model when dealing with isotropic
data and weight matrices. An extension to nearly orthogonal data is given in [WZ23, FW20]. A
similar outcome is established by [Cho22, LLC18], utilizing concentration of measure and leave-
one-out methods, and in [PS21] using resolvent methods. Beyond bulk laws, [BP22] explore
outlier eigenvalue of the conjugate kernel. Notably, the proof of our main result provides a
deterministic equivalent for the conjugate kernel, akin to the findings of [Cho22, LLC18],
employing a significantly different approach.

2.2.3. Gaussian equivalence

Theorem 2.1 establishes a Gaussian equivalence principle, indicating that every random fea-
tures model trained with ridge regression, as described in the statement of Theorem 2.1,
performs equivalently to a surrogate Gaussian model with a matching covariance structure.
However, it is important to note, as mentioned in [LLC18], that the distribution of the input
data can impact the performance of the random features model. This influence stems from
the fact that, although there is Gaussian equivalence at the level of random feature matrices,
the distribution of the input may influence the covariance matrices KAAT , KAÂT , KÂAT , and
KÂÂT , which are directly linked to the performance of the random features model.

Some of the works on the random features model rely upon or prove a Gaussian equiva-
lence principle, for instance [DL20]. This Gaussian equivalence postulate that every random
feature model is equivalent to a surrogate Gaussian model with matching covariance. Gaussian
equivalence theorems have been established in [GLK+20] using a non-rigorous replica method,
rigorously in [GLR+22, HMRT22] for random features ridge regression. Then, [HL23] shows
that a Gaussian equivalence principle holds more generally for random features under student
teacher model with more general loss and regularization functions. Gaussian equivalence has
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also been established for deep random features [SCDL23]. Our Gaussian equivalence principle
asserts that every random features model trained with ridge regression is equivalent—meaning
it exhibits the same training and generalization error—to a Gaussian model with a matching
covariance. This can be viewed as an extension of previous work to the empirical test error
setting.

2.2.4. Matrix Dyson equation

The matrix Dyson equation, a self-consistent matrix equation, has proven to be a valuable tool
for deriving local laws in various contexts. For an excellent introduction to this subject, we
recommend [Erd19]. The vector version of the matrix Dyson equation has been employed to
establish local laws for Generalized Wigner matrices [AEK19a, AKE17, AEK17]. Extending
its applicability, the matrix Dyson equation has been used to investigate local laws for Her-
mitian matrices with correlations featuring fast decay, as well as those with slower correlation
decay, particularly focusing on regular edges [AEKS20] and regions away from the support
edges [EKS19]. A notable advantage of the matrix Dyson equation lies in the fact that its
solution admits a Stieltjes representation. Leveraging this equation, detailed regularity prop-
erties of the self-consistent density of states have been explored [AEK18], and bounds on the
spectrum of Kronecker random matrices have been established [AEKN19]. We explore a gener-
alized version of the matrix Dyson equation, providing a framework for deriving deterministic
equivalents for pseudo-resolvents.

2.2.5. Linearization

The concept of linearization gained prominence following the groundbreaking work of [HT05].
This work essentially demonstrated that to analyze a polynomial expression in matrices, it is
sufficient to consider a linear polynomial with matrix coefficients [HT05]. A limitation of [HT05]
is that their linearization trick does not preserve the self-adjointness of the polynomial expres-
sion. This issue was addressed by [And13], who proved that when the polynomial expression
is self-adjoint, it is possible to choose the coefficients of the linearization in a way that main-
tains self-adjointness [And13]. This result was later extended to rational expressions [HMS18].
Notably, linearizations are highly non-unique, leading to the emergence of various other lin-
earization techniques. For instance, [EKN20] introduced a minimal linearization. Importantly,
the arguments supporting these linearization techniques are often constructive, enabling the
explicit construction of suitable linearizations. The linearization trick has found application
in free probability, allowing the study of polynomials of random matrices on both the global
scale [And13, BMS17, HT05, HMS18, HMV06] and the local scale [EKN20, FKN23, And15].
The combination of the linearization trick, referred to as the pencil method in this context,
along with operator-valued free probability has found successful applications in the study of
simple neural networks [MP22, ALP19, AP20a, AP20b, TAP21b, TAP21a]. In this work, we
develop a framework based on an extension of the matrix Dyson equation to study asymptotic
properties of linearizations with a general correlation structure. This provides an alternative
to the use of operator-valued free probability, and we believe that our framework could find
multiple applications in machine learning.
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2.2.6. Linearized matrix Dyson equation

The concept of linearization naturally gives rise to the study of pseudo-resolvents. Pseudo-
resolvents are inherently more challenging to analyze than regular resolvents because there is
no spectral parameter spanning the entire diagonal. Nonetheless, the matrix Dyson equation
has been extended to study pseudo-resolvents. [And13] derived global laws for linearizations
of polynomials in independent Wigner matrices using a matrix Dyson equation for lineariza-
tion, which the author called the Schwinger–Dyson equation [And13]. This work was extended
in [And15] to study the anticommutator on a local scale and more generally to study poly-
nomials of independent matrices with independent centered entries and suitable normaliza-
tion [EKN20, FKN23] under the name Dyson equation for linearization (DEL).

Our approach differs significantly. While previous research has focused on linearizations with
blocks of independent generalized Wigner matrices, we consider linearizations with arbitrary
correlation structures. We are interested in studying pseudo-resolvents on a global scale, which,
although less precise than the local scale, allows us to relax the assumptions of previous work.
Additionally, global laws are sufficient to make assertions about machine learning models in
many cases. Our approach also provides a novel perspective on studying the matrix Dyson
equation. Notably, we analyze the Carathedory-Riffen-Finsler (CRF) pseudo-metric [Har03,
Har79] to demonstrate that the matrix Dyson equation for linearizations is asymptotically
stable under general assumptions.

3. Framework

We defer most of the proofs and discussion for this section to Section A. We focus on a class
of real1 self-adjoint linearizations denoted as

L =

[
A BT

B Q

]
∈ Rℓ×ℓ, (3)

where A ∈ Rn×n is a potentially random self-adjoint complex matrix, Q ∈ Rd×d is a deter-
ministic invertible self-adjoint matrix and B ∈ Rd×n is a potentially random arbitrary matrix.
Our primary interest lies in analyzing the behavior in high dimensions of the pseudo-resolvent
(L − zΛ)−1, where Λ := BlockDiag{In×n, 0d×d} and z ∈ H := {z ∈ C : ℑ[z] > 0} represents
the upper half of the complex plane.

Our framework relies on the linearized matrix Dyson equation (MDE)

(EL− S(M)− zΛ)M = Iℓ, (4)

where the spectral parameter z is chosen from the upper half complex plane H. Here, the
super-operator

S : M ∈ Cℓ×ℓ 7→ E
[
[(L− EL)M(L− EL)]1,1 (A− EA)M1,1(B

T − EBT )

(B − EB)M1,1(A− EA) (B − EB)M1,1(B − EB)T

]
∈ Cℓ×ℓ. (5)

is a positivity-preserving linear map which encodes the second moment of L. For conciseness,
we let s ∈ R>0 such that ∥S(W )∥ ≤ s∥W∥ for every W ∈ Cℓ×ℓ, but also ∥Si,j(W )∥ ≤ s∥W1,1∥
for all (i, j) ∈ {(1, 2), (2, 1), (2, 2)} and W ∈ Cℓ×ℓ.

1Our framework can easily be extended to complex linearizations L ∈ Cℓ×ℓ with ℑ[L] ⪯ 0. Because we do
not have any application for this generalization in mind, we do not pursue this direction for the sake of clarity.
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In order to ensure the existence of a unique solution to the matrix Dyson equation, we need
to restrict (4) to a suitable set. Consequently, we introduce the admissible set2

M := {f : H 7→ A analytic} , A := {W ∈ Cℓ×ℓ : ℑ[W ] ⪰ 0 and ℑ[W1,1] ≻ 0}. (6)

Our primary strategy for analyzing (4) involves initially establishing analogous results for
a regularized version of the equation. This regularization typically simplifies the problem,
enabling us to leverage existing knowledge. Subsequently, we demonstrate the feasibility of
setting the regularization parameter to zero, effectively reverting to the original equation.
Importantly, we ensure that the statements derived for the regularized variant remain valid in
this limit, thereby providing valuable insights into the properties of (4). For this reason, we
introduce the regularized matrix Dyson equation (RMDE)

(EL− S(M (τ))− zΛ− iτIℓ)M
(τ) = Iℓ (7)

for every τ > 0. The corresponding admissible set is given by

M+ := {f : H 7→ A+ analytic} , A+ := {W ∈ Cℓ×ℓ : ℑ[W ] ≻ 0} ∩ A . (8)

Our initial key result naturally revolves around establishing the existence and uniqueness of
a solution for (4). In traditional matrix Dyson equation theory, wherein the spectral parameter
spans the entire diagonal, the existence of a unique solution usually emerges comprehensively
from [HFS07, Theorem 2.1]. Indeed, we leverage this theorem precisely to establish the exis-
tence and uniqueness of a solution to (7). However, due to the absence of a spectral parameter
spanning the entire diagonal in our case, demonstrating the existence of a solution to (4) is not
trivial and requires careful analysis. Nonetheless, by leveraging the suitable properties of the
admissible set and the surrogate regularized matrix Dyson equation, we obtain the following
existence and uniqueness result.

Theorem 3.1 (Existence and Uniqueness). There exists a unique analytic matrix-valued func-
tion M ∈ M such that M(z) solves the MDE (4) for every z ∈ H. Additionally, ∥M1,1(z)∥ ≤
(ℑ[z])−1 and

M(z) =

[
0n×n 0n×d

0d×n Q−1

]
+

∫
R

Ω(dλ)

λ− z

for all z ∈ H, where Ω is a real Borel ℓ× ℓ positive semidefinite compactly supported 3 measure
satisfying ∫

R
Ω(dλ) =

[
In −E[BT ]Q−1

−Q−1E[B] Q−1E[BBT ]Q−1.

]
.

For the rest this paper, we will utilize the notation M to represent the unique solution as
ensured by Theorem 3.1, M (τ) to represent the unique solution to the regularized linearized
MDE (7), and we will omit the explicit mention of z when the context confines it to a fixed
z ∈ H.

2Alternatively, assuming that A = EA and EB = 0, we can choose S(M) = E[(L − EL)M(L − EL)] and
consider the set

A := {W ∈ Cℓ×ℓ : ℑ[W ] ⪰ 0 and ℑ[W1,1] ≻ 0, W1,2 = W2,1 = 0}.
Applying our framework under these assumptions requires no modifications, making it particularly suitable,
for example, for the study of powers of Wigner matrices.

3The bound on the support is effective, and is given explicitly in Lemma A.5.
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In the proof of Theorem 3.1, we define M1,1 as the limit point of the normal family {M (τ)
1,1 :

τ > 0} as τ → 0. Decomposing (4) block-wise, we then observe that M (τ)(z) converges to M(z)
in spectral norm for any fixed z ∈ H as τ approaches the origin from above. However, it will be
considerably beneficial to quantify the extent to which ∥M(z)−M (τ)(z)∥ varies with respect to
τ ∈ R>0 and ℓ ∈ N. Interestingly, when considering the analogous measure with respect to the
pseudo-resolvent, it becomes apparent that ∥(L−zΛ)−1−(L−zΛ−iτIℓ)

−1∥ ≤ τ∥(L−zΛ)−1∥2,
with the expectation that ∥(L − zΛ)−1∥2 remains bounded as the dimension of the problem
increases.

Assumption 1. For every z ∈ H, there exists a function f and subsequence {τk} ⊆ R>0 such
that τk → 0, f(τk) → 0 and ∥M (τk)(z)−M(z)∥ ≤ f(τk) + oℓ(1) for all k ∈ N and every ℓ ∈ N
large enough.

It is noteworthy that Assumption 1 is fulfilled within the frameworks based on the matrix
Dyson equation for linearization as detailed in [EKN20, And13, FKN23]. This satisfaction
is explicitly indicated by [EKN20, Equation 4.11], [And13, Estimates 6.3.3.], and [FKN23,
Equation A.25]. In general, the validity of Assumption 1 in these cases stems from the ability
to construct a dimension-independent representation of the solution to the (R)MDE using
tools from free probability. As asserted by [HT05, Lemma 5.4], such a representation exists

whenever L takes the form L = A0 ⊗ In +
∑k

j=1 Ai ⊗ Xj , where {Aj}kj=0 forms a collection

of complex d× d self-adjoint matrices, and {Xj}kj=1 forms a collection of independent random

matrices with {(Xj)a,a}na=1 ∪ {(
√
2ℜXj)a,b}a<b ∪ {(

√
2ℑXj)a,b}a<b being a collection of n2

i.i.d. centered Gaussian random variables for every j ∈ {1, 2, . . . , k}.
Furthermore, Assumption 1 is related to the stability operator. Following the notation

in [AEKN19], the stability operator is defined as L : W ∈ Cℓ×ℓ 7→ W − MS(W )M . The
concept of the stability operator is inherently connected to the analysis of the matrix Dyson
equation [AEKN19, Erd19, AEK19b, FKN23]. The term stability operator is aptly chosen be-
cause, when it is both invertible and its inverse is bounded, it provides a means to establish the
stability of the matrix Dyson equation through techniques like an implicit function theorem
such as the one in [AEK19b, Lemma 4.10] as demonstrated in the work of [Erd19, EKN20]. The
stability operator organically appears in the uniqueness argument, where its invertibility at
infinity allows us to uniquely and recursively determine the power series expansion of the solu-
tion. The connection between the stability operator and Assumption 1 becomes apparent when
we consider the derivative of M (τ)(z) with respect to iτ , which yields L(∂iτM(z)) = (M(z))2.
Because M(z) is bounded in operator norm, we can conclude that Assumption 1 is implied by
the requirement of having an invertible stability operator with a bounded inverse.

We proceed to prove the asymptotic stability of the MDE. To this end, let F (z) = E(L −
zΛ)−1 ∈ M be the expected pseudo-resolvent. It is inconvenient to work directly with the
expected pseudo-resolvent, and we will systematically prefer working with a regularized version
of the same object. For each τ ∈ R>0, we consider the expected regularized pseudo-resolvent
F (τ)(z) = E(L− zΛ− iτIℓ)

−1 ∈ M+ which satisfies

(EL− S(F (τ)(z))− zΛ− iτIℓ)F
(τ)(z) = Iℓ +D(τ), (9)

where D(τ) is a regularized perturbation term explicitly given by

D(τ) = E
[(
EL− L− S(E(L− zΛ− iτIℓ)

−1)
)
(L− zΛ− iτIℓ)

−1
]
. (10)

Essentially, we consider F (τ) as a function that almost satisfies the MDE, up to an additive
perturbation term D(τ). By stability, we mean the property of the MDE that implies F (z) is
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close — pointwise in spectral norm — to the solution M(z) of (4) for every z ∈ H whenever
the perturbation D(τ) and the regularization parameter τ are small.

Since our primary objective is to investigate the behavior in the high-dimensional limit, it
is essential for the super-operator S , among other objects, to remain bounded as the problem
dimension increases. We make the following assumption.

Assumption 2. Suppose that there exists s ∈ R>0 such that ∥S(W )∥ ≤ s∥W∥ for every
W ∈ Cℓ×ℓ and lim supℓ→∞ s < ∞. Furthermore, assume that lim supℓ→∞ ∥EL∥ < ∞ and
lim supℓ→∞ E∥(L− zΛ)−1∥2 < ∞.

Using the fact that the mapping characterizing (7) is contractive with respect to the
Carathéodory-Riffen-Finsler pseudometric, we establish the stability of the regularized MDE
for every regularization parameter τ ∈ R>0. Through a careful analysis, we further reveal that
it is feasible to decrease the regularization parameter to zero at a specific rate while maintain-
ing stability. This rate is contingent upon the rate at which the perturbation matrix vanishes.
The resulting outcome is the following asymptotic stability of (4).

Theorem 3.2 (Asymptotic stability). Suppose that ∥D(τ)∥ ℓ→∞−−−→ 0 for every τ ∈ R>0. Then,

under Assumptions 1 and 2, ∥M(z)− E(L− zΛ)−1∥ ℓ→∞−−−→ 0 for every z ∈ H.

Now that we have existence of a unique solution M to (4) as well as an asymptotic stability
property, we want to show that M(z) serves as a favorable asymptotic approximation for the
pseudo-resolvent (L − zΛ)−1. In view of Theorem 3.2, the focus shifts to proving that the
perturbation matrix vanishes in norm as the problem dimension grows for every regularization
parameter. There are various methods to establish this, depending on the assumptions about
the linearization L. To apply our framework and prove Theorem 2.1, we naturally choose
a route based on Gaussian concentration inequalities. This choice confines our theoretical
considerations to linearizations characterized by Gaussian-concentrated entries.

Assumption 3. Suppose that γ ∈ N, g ∼ N (0, Iγ) and that there exists a map C : Rγ 7→ Rℓ×ℓ

such that L ≡ L(g) = C(g) + EL. Furthermore, assume that C is symmetric in the sense that
C(x) = (C(x))T for every x ∈ Rγ .

Under Assumption 3, we aim to decompose the perturbation matrix D(τ) into terms that
are amenable to analysis. To achieve this, define

∆(L, τ ; z) = E[(L− EL)(L− zΛ− iτIℓ)
−1]

+ E[(L̃− EL)(L− zΛ− iτIℓ)
−1(L̃− EL)(L− zΛ− iτIℓ)

−1] (11)

where L̃ is an i.i.d. copy of L,

S̃ : M ∈ Cℓ×ℓ 7→ E [(L− EL)M(L− EL)]− S(M) ∈ Cℓ×ℓ, 4 (12)

and consider the decomposition

D(τ) = E
[
S((L− zΛ− iτIℓ)

−1)(L− zΛ− iτIℓ)
−1
]
− S(F (τ))F (τ) (13a)

+ E
[
S̃((L− zΛ− iτIℓ)

−1)(L− zΛ− iτIℓ)
−1
]

(13b)

−∆(L, τ). (13c)

4We may also remove any term in the upper-left block of E [(L− EL)M(L− EL)] from S and add them to

S̃ without changing any of our arguments.
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The first perturbation term in (13a) arises from the use of the expected pseudo-resolvent in
Theorem 3.2. To ensure that this perturbation term is asymptotically small, we require the
super-operator S to be averaging. This implies that S((L−zΛ−iτIℓ)

−1) should exhibit a ”law
of large numbers” behavior and converge to a deterministic limit. While working directly with
the pseudo-resolvent would eliminate this specific perturbation term from the expectation of
D(τ), such an approach would have its disadvantages. Utilizing the expected pseudo-resolvent,
on the other hand, allows us to work with deterministic objects and leverage norm bounds. We
derive a condition for S((L− zΛ− iτIℓ)

−1) to concentrate around its mean based on Gaussian
concentration.

The second perturbation term, as expressed in (13b), arises from our specific definition of the
super-operator and would not be present if we defined the super-operator as E[(L−EL)M(L−
EL)]. However, our chosen definition of the super-operator, coupled with the assumption Q =
EQ, ensures that the MDE can be determined by the upper-left n× n block. This distinction
allows us to establish the existence of a solution to (4). Consequently, we view S̃ as a correction
term that be vanishing in ℓ.

Finally, (13c) posits that the matrix L should approximate a Gaussian distribution in the
sense that it should asymptotically satisfy a matrix Stein lemma with a vanishing error. The
quantity ∥∆(L, τ)∥ serves informally as a metric characterizing the distance between L and a
matrix with Gaussian entries. Notably, the subsequent result demonstrate that ∆(L, τ) = 0
holds whenever L has Gaussian entries.

Lemma 3.1. If τ ∈ R>0, z ∈ H and Assumption 3 holds with a linear map C, then ∆(L, τ ; z) =
0.

Proof. Let j, k ∈ {1, 2, . . . , ℓ} be arbitrary. Consider C as a ℓ×ℓ×γ tensor such that [C(g)]j,k =
Cj,k,αgα. Here, we use Einstein’s notation which means that we sum over every subscript
appearing at least two times in a given expression. By Stein’s lemma [Ste81, Lemma 1],

E
[
(L− EL)(L− zΛ− iτIℓ)

−1
]
j,k

= E
[
Cj,m,αgα(L− zΛ− iτIℓ)

−1
m,k

]
= E

[
Cj,m,α

∂(L− zΛ− iτIℓ)
−1
m,k

∂gα

]
Let eα ∈ Rγ be the α-th canonical basis vector, δ ∈ R>0 and Lδ = C(g + δeα) + EL. Then,

(Lδ − zΛ− iτIℓ)
−1
m,k − (L− zΛ− iτIℓ)

−1
m,k =

[
(Lδ − zΛ− iτIℓ)

−1(L− Lδ)(L− zΛ− iτIℓ)
−1
]
m,k

= −δ
[
(Lδ − zΛ− iτIℓ)

−1C(eα)(L− zΛ− iτIℓ)
−1
]
m,k

.

Taking the limit of the quotient of this difference with δ as δ approaches 0, we get that

∂(L− zΛ− iτIℓ)
−1
m,k

∂gα
= −

[
(L− zΛ− iτIℓ)

−1C(eα)(L− zΛ− iτIℓ)
−1
]
m,k

and, consequently,

E
[
(L− EL)(L− zΛ− iτIℓ)

−1
]
j,k

= −E
[
Cj,m,α(L− zΛ− iτIℓ)

−1
m,aCa,b,α(L− zΛ− iτIℓ)

−1
b,k

]
.

Note that

E
[
(L− EL)TN(L− EL)

]
j,k

= E [Cj,a,αgαNa,bCb,k,βgβ ] = E [Cj,a,αNa,bCb,k,α]

for every N ∈ Rℓ×ℓ independent of L. The result follows.
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Bounding each term on the right-hand side of (13) individually, we may now control the
perturbation matrix (10) in norm for every τ ∈ R>0.

Theorem 3.3. Let τ ∈ R>0, z ∈ H and D(τ) be the perturbation matrix in (10). Under
Assumption 3, assume that the mapping g ∈ (Rγ , ∥ · ∥2) 7→ S((L(g)−zΛ− iτIℓ)

−1) ∈ (Cℓ×ℓ, ∥ ·
∥2) is λ-Lipschitz with respect to the operator norm. Then, there exists an absolute constant
c ∈ R>0 such that

∥D(τ)∥ ≤ cτ−1
√
ℓλ+ τ−2∥S̃∥+ ∥∆(L, τ)∥.

As a direct outcome of Theorem 3.3, it follows that ∥D(τ)∥ tends towards zero as the
dimension ℓ approaches infinity under the conditions limℓ→∞

√
ℓλ = 0, limℓ→∞ ∥S̃∥ = 0 and

limℓ→∞ ∥∆(L, τ)∥ = 0 for every τ ∈ R>0 small enough. In the proof of Theorem 2.1, we will
upper bound the Lipschitz constant λ in Theorem 3.3 by λ ≤ τ−2∥S∥F→2λC where ∥S∥F→2

denote the operator norm of the map S : (Cℓ×ℓ, ∥ · ∥F ) 7→ (Cℓ×ℓ, ∥ · ∥2) and λC is the Lipschitz
constant associated with the map C : (Rγ , ∥ · ∥2) 7→ (Rℓ×ℓ, ∥ · ∥F ). Then, limℓ→∞

√
ℓλ = 0 will

follow from ∥S∥∥·∥F→∥·∥2
≲ ℓ−

1
2 and λC ≲ ℓ−

1
2 .

By Lemma 3.1, it is trivial to control ∥∆(L, τ)∥ when L has Gaussian entries. Alternatively,
an interpolation approach based on cumulant bounds in the spirit of [LP09, Proposition 3.1]
appears to be a suitable avenue to extend Stein’s lemma, and therefore Lemma 3.1 to more a
larger class of distribution. In the proof of Theorem 2.1, we employ a leave-one-out strategy
to demonstrate that ∥∆(L, τ)∥ is vanishing in ℓ for every τ ∈ R>0.

The culmination of Theorem 3.2 and Theorem 3.3 along with these specified conditions
signifies that M(z) becomes a deterministic equivalent for the expected pseudo-resolvent E(L−
zΛ)−1 across all z ∈ H.

Corollary 3.1. Let z ∈ H and λ be defined as in Theorem 3.3. Under Assumptions 1 to 3,
suppose that limℓ→∞

√
ℓλ = limℓ→∞ ∥S̃∥ = limℓ→∞ ∥∆(L, τ)∥ = 0 for every τ ∈ R>0 small

enough. Then, ∥E(L− zΛ)−1 −M(z)∥ ℓ→∞−−−→ 0.

In certain scenarios, it is feasible to alleviate the reliance of Corollary 3.1 on Assumption 3.
Notably, by employing a universality result such as the one presented in [BvH23, Lemma 6.11],
one may directly argue that certain functionals of resolvent of random matrices do not depend
on the distribution of the input.

The only remaining task is to establish that the expected pseudo-resolvent is itself a de-
terministic equivalent for the true pseudo-resolvent — a widely acknowledged fact that stems
from a variety of methodologies. We present one such result, based on the assumptions used
above.

Lemma 3.2. Let U ∈ Cℓ×ℓ with ∥U∥F ≤ 1 and assume that the map g ∈ (Rγ , ∥ · ∥2) 7→
(L(g)−zΛ)−1 ∈ (Cℓ×ℓ, ∥·∥F ) is λ-Lipschitz with λ ≍ ℓ−r for some r > 0. Under Assumption 3,

tr(U((L− zΛ)−1 − E(L− zΛ)−1))
a.s.−−−→
ℓ→∞

0.

Combining Corollary 3.1 and Lemma 3.2 through the utilization of Von Neumann’s trace
inequality, we derive the ensuing anisotropic law, presented here for the sake of comprehen-
siveness.

Corollary 3.2. Under the settings of Corollary 3.1 and lemma 3.2, tr(U((L − zΛ)−1 −
M(z)))

a.s.−−−→
ℓ→∞

0 for every U ∈ Cℓ×ℓ with ∥U∥∗ ≤ 1.
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4. Proof of main theorem

In this section, we provide some details concerning the proof of Theorem 2.1 using our frame-
work. First, note that we may expand the test error in (2) as

Etest = ∥ÂAT
(
AAT + δIntrain

)−1
y∥2 − 2ỹT ÂAT

(
AAT + δIntrain

)−1
y + ∥ỹ∥2.

Each term in the above equations takes the form of a bilinear form, aligning well with the
framework of deterministic equivalence. In view of this, our goal will be to use the matrix
Dyson equation for linearization framework to determine deterministic equivalents for the

matrix ÂAT
(
AAT + δIntrain

)−1
and its square.

4.1. First deterministic equivalent

We start by considering ÂAT
(
AAT + δIntrain

)−1
. Let ℓ = ntrain + d+ 2ntest and consider the

linearization

L =


δIntrain

A 0ntrain×ntest
0ntrain×ntest

AT −Id×d 0d×ntest
ÂT

0ntest×ntrain
0ntest×d 0ntest×ntest

−Intest

0ntest×ntrain Â −Intest 0ntest×ntest

 ∈ Rℓ×ℓ. (14)

Taking Λ := BlockDiag{Intrain+d, 02ntest×2ntest
}, we use the Schur complement formula to ex-

press the pseudo-resolvent (L− zΛ)−1 blow-wise as

(L− zΛ)−1 =


R (1 + z)−1RA (1 + z)−1RAÂT 0

(1 + z)−1ATR R̄ R̄ÂT 0

(1 + z)−1ÂATR ÂR̄ ÂR̄ÂT −Intest

0 0 −Intest
0

 .

Here R := ((1+z)−1AAT +(δ−z)Intrain)
−1 represents a resolvent and R̄ := −((1+z)Id+(δ−

z)−1ATA)−1 is a co-resolvent. Indeed, the term limz→0(L− zΛ)−1
3,1 = ÂAT

(
AAT + δIntrain

)−1

holds the relevant expression. Therefore, it suffices to find a deterministic equivalent for the
pseudo-resolvent (L− zΛ)−1 and take the spectral parameter to zero.

The linearization in (14) yields the super-operator

S : M : Cℓ×ℓ 7→


tr(M2,2)KAAT 0 0 tr(M2,2)KAÂT

0 ρ(M)Id 0 0
0 0 0 0

tr(M2,2)KÂAT 0 0 tr(M2,2)KÂÂT

 ∈ Cℓ×ℓ

where ρ(M) := tr(KAATM1,1+KAÂTM4,1+KÂATM1,4+KÂÂTM4,4). Then, S(M) = E[(L−
EL)M(L− EL)]− S̃(M) holds with

S̃(M) := E


0 KAATMT

2,1 +KAÂTM
T
2,4 0 0

MT
1,2KAAT +MT

4,2KÂAT 0 0 MT
1,2KAÂT +MT

4,2KÂÂT

0 0 0 0
0 KÂATM

T
2,1 +KÂÂTM

T
2,4 0 0

 .
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By Theorem 3.1, there exists a unique solution M ∈ M such that M(z) solves (4) for
every z ∈ H. Plugging-in the expression for the super-operator above and using the Schur
complement formula, we find that

M(z) =


((δ−z)Intrain

−tr(M2,2)KAAT )−1 0 −tr(M2,2)M1,1KAÂT 0
0 d−1 tr(M2,2)Id 0 0

− tr(M2,2)KÂAT M1,1 0 (tr(M2,2))
2KÂAT M1,1KAÂT

+tr(M2,2)KÂÂT
−Intest

0 0 −Intest 0


(15)

with M2,2 = −(1 + z + tr(KAATM1,1))
−1Id.

To apply Theorem 3.3, it is necessary to demonstrate that ∥∆(L, τ ; z)∥, as defined in (11),
vanishes as n → ∞ for every regularization parameter τ ∈ R>0. To achieve this, we employ a
leave-one-out method. While the ensuing argument involves detailed and intricate calculations,
it is primarily a series of tedious steps. For brevity, we state the result here and defer the proof
to Section B.

Lemma 4.1. Fix z ∈ H and τ ∈ R>0. Under the settings of Theorem 2.1, limℓ→∞ ∥∆(L, τ)∥ =
0 for every τ ∈ R>0.

A key observation that greatly simplifies both the theoretical analysis of the MDE and
enables us to derive an iterative procedure for computing its solution is the fact that we can
treat the upper-left ntrain + d block of the MDE as a separate MDE. This insight allows us
to effectively break down the problem and focus on a smaller sub-MDE. Let L(sub) denote the
upper-left ntrain + d block of L, define a new super-operator

S(sub) : W ∈ Cntrain+d 7→
[
tr(W2,2)KAAT 0

0 tr(KAATW1,1)

]
∈ Cntrain+d

and a new sub-MDE mapping

F (sub) : f ∈ M
(sub)
+ 7→ (EL(sub) − S(sub)(f(·))− (·)Intrain+d)

−1 ∈ M
(sub)
+ .

Here, the set M
(sub)
+ refers to a subset of the usual set of ntrain + d × ntrain + d matrix-

valued functions. Given that the sub-MDE has a spectral parameter spanning its diagonal,
the iteration scheme Nk+1 = F (sub)(Nk) converges to the unique solution of the sub-MDE

M (sub) = F (sub)(M (sub)) for any N0 ∈ M
(sub)
+ , as per general theory [HFS07, Theorem 2.1].

Considering that we want to find a deterministic equivalent for (L−zΛ)−1 in a neighborhood
of z = 0, the key lies in establishing control over M(z) in the proximity of z = 0. This control
is secured through the insights provided by the following lemma.

Lemma 4.2. Let z ∈ H with |z| < 1 ∧ δ and M ∈ M be the unique solution to (15). Then,
ℜ[M1,1(z)] ≻ 0 and ℜ[M2,2(z)] ≺ 0. Additionally, ∥M1,1(z)∥ ≤ (δ − ℜ[z])−1 and ∥M2,2(z)∥ ≤
(1 + ℜ[z])−1.

Proof. Let f be any (ntrain + d)× (ntrain + d) matrix-valued analytic function on H such that
ℑ[f(z)] ≻ 0, f1,2(z) = N2,1(z) = 0 for every z ∈ H. Further assume that ℜ[f1,1(z)] ⪰ 0 and
ℜ[f2,2(z)] ⪯ 0 for every z ∈ H with |z| < 1 ∧ δ. Using the resolvent identity,

ℜ[F (sub)(f)] = F (sub)(f)

[
(δ−ℜ[z])Intrain

− tr(ℜ[f2,2])KAAT
0

0 −(1+ℜ[z]+tr(KAAT ℜ[f1,1]))

]
(F (sub)(f))∗ (16)
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where we omit the dependence of f on z. Thus, ℜ[F (sub)
1,1 (f)] ≻ 0 and ℜ[F (sub)

2,2 (f)] ≺ 0 for

every z ∈ H with |z| < 1 ∧ δ. Additionally, F (sub)
1,2 (f) = F (sub)

2,1 (f) = 0. Since the iterates

fk+1 = F (sub)(fk) converges to the unique solution to the sub-MDE, it must be the case that

ℜ[M (sub)
1,1 (z)] ≻ 0 and ℜ[M (sub)

2,2 (z)] ≺ 0 for every z ∈ H with |z| < 1∧ δ. In fact, by uniqueness
of the solution to (4), that ℜ[M1,1(z)] ≻ 0 and ℜ[M2,2(z)] ≺ 0 for every z ∈ H with |z| < 1∧ δ.
Using the fact that F (sub)(M (sub)) = M (sub) and (16), we get

ℜ[M1,1] ⪰ (δ −ℜ[z])M1,1(M1,1)
∗ and ℜ[M2,2] ⪯ −(1 + ℜ[z])M2,2(M2,2)

∗

for every z ∈ H with |z| ≤ 1∧δ. Since the spectral norm maintains the Loewner partial ordering
and the spectral norm of the real and imaginary part of a complex matrix is upper-bounded
by the spectral norm of the matrix itself, we derive ∥ℜ[M1,1]∥ ≥ (δ − ℜ[z])∥M1,1(M1,1)

∗∥ =
(δ−ℜ[z])∥M1,1∥2 and ∥ℜ[M2,2]∥ ≥ (1+ℜ[z])∥M2,2∥. Rearranging yields the desired result.

It will be useful later to not only have a deterministic equivalent for (L − zΛ)−1, but also
for (L(sub) − zIntrain

)−1.

Lemma 4.3. Let z ∈ H with |z| < δ ∧ 1 and M ∈ M be the unique solution to the sub-MDE.

Under the settings of Theorem 2.1, tr(U((L(sub)−zIntrain+d)
−1−M (sub)(z)))

a.s.−−−−→
n→∞

0 for every

U ∈ C(train+d)×train+d) with ∥U∥∗ ≤ 1.

Proof. LetD(sub) = E[(EL(sub)−L(sub)−S(sub)(E(L(sub)−zIntrain+d)
−1))(L(sub)−zIntrain+d)

−1]
be the perturbation matrix, as defined in (10), associated with with linearization L(sub). In
particular, (EL(sub)−S(E(L(sub)−zIntrain+d)

−1)−zItrain+d)E(L(sub)−zIntrain+d)
−1 = Itrain+d+

D(sub).
Since there is a spectral parameter spanning the entire diagonal in the sub-MDE, it follows

from [AEKN19, Corollary 3.8] that Assumption 1 is satisfied for the sub-MDE. Because both

∥A∥ and ∥Â∥ are centered and bounded in L4, it is clear that lim supℓ→∞(∥S∥ ∨ ∥EL∥) < ∞.
It also follows from Hölder’s inequality that lim supℓ→∞ E∥(L − zΛ)−1∥2 < ∞. In particular,
Assumption 2 is satisfied.

Given that Assumption 3 is evidently satisfied, and we have demonstrated in Lemma 4.1
that ∥∆(L(sub), τ ; z)∥ → 0 as n → ∞ for every τ ∈ R>0, we only have to establish that the term
involving the Lipschitz constant and the term involving the norm of S̃(sub) in Theorem 3.3 are
asymptotically negligible.

We derive some useful norm bounds. Recall that R = ((1 + z)−1AAT + (δ − z)Intrain
)−1.

For |z| < 1 ∧ δ, ℜ[(1 + z)−1] ≥ |1 + z|−2(1 − |z|) ≥ (1 − |z|)/4 > 0 and ℜ[δ − z] ≥ δ − |z|.
Hence, ℜ[R] ≥ (δ− |z|)RR∗ which implies that ∥R∥ ≤ (δ− |z|)−1. A similar argument applied
to R̄ = −((1 + z)Id + (δ − z)−1ATA)−1 gives ∥R̄∥ ≤ (1 − |z|)−1. Furthermore, we know that
∥RA∥2 = ∥RAATR∗∥ ≤ ∥RAAT ∥∥R∥. By definition, RAAT = (1+ z)Intrain − (1+ z)(δ− z)R.
Thus, ∥RAAT ∥ ≤ 2(2 + δ)(δ − |z|)−1 and ∥RA∥ ≤

√
2(2 + δ)(δ − |z|)−1.

Based on Assumption 3, write L(sub) ≡ L(sub)(Z) = C(Z)+EL(sub) for Z ∈ Rn0×d a matrix
of i.i.d. standard normal entries and let λ be the Lipschitz constant associated to the function
Z ∈ (Rn0×d, ∥·∥F ) 7→ S(sub)((L(sub)(Z)−zIntrain+d)

−1) ∈ (C(ntrain+d)×(ntrain+d), ∥·∥2). As men-
tioned in the discussion following the statement of Theorem 3.3, λ ≤ (ℑ[z])−2∥S(sub)∥F 7→2λC
where λC is the Lipschitz constant associated with map C : Z ∈ (Rn0×d, ∥ · ∥F ) 7→ C(Z) ∈
(R(ntrain+d)×(ntrain+d), ∥ · ∥F ). For every N ∈ C(ntrain+d)×(ntrain+d), we can use Cauchy-Schwarz
inequality to obtain

∥S(sub)(N)∥ ≤ ∥KAAT ∥| tr(N2,2)|+ | tr(KAATN1,1)| ≤ (
√
d+

√
ntrain)∥KAAT ∥∥N∥F .
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By Jensen’s inequality, ∥KAAT ∥ = ∥d−1E[AAT ]∥ ≤ d−1E∥A∥2. In fact, by a similar argument,
∥KAAT ∥ ≍ ∥KÂAT ∥ ≍ ∥KÂAT ∥ ≍ ∥KÂÂT ∥ ≍ n−1. Since we assumed that ∥A∥ is bounded

in L4 and we are working in the proportional limit, ∥S(sub)∥F 7→2 ≍ n−1/2. Next, let Z1, Z2 ∈
Rn0×d and notice that ∥C(Z1)− C(Z2)∥F ≤ n−1/2λσλφ∥X∥∥Z1 − Z2∥. Since λσ, λφ and ∥X∥
are all bounded by assumption, λσ ≍ n−1/2 and λ ≲ (ℑ[z])−1n−1.

Finally, for every N ∈ C(ntrain+d)×(ntrain+d),

S̃(sub)(N) = E
[

0 KAATNT
2,1 +KAÂTN

T
2,4

NT
1,2KAAT +NT

4,2KÂAT 0

]
.

Since∥KAAT ∥ ≍ ∥KÂAT ∥ ≍ ∥KÂAT ∥ ≍ ∥KÂÂT ∥ ≍ n−1/2, ∥S̃(sub)∥ ≍ n−1/2.
Combining everything, the result follows from Corollary 3.2.

The final prerequisite needed to establish that the solution to (15) acts as a deterministic
equivalent for (L− zΛ)−1, where L is defined in (14), for every z ∈ H within a neighborhood
of the origin, is to confirm that Assumption 1 holds. We demonstrate this in the following
lemma.

Lemma 4.4. Suppose that M ∈ M is the unique solution to (15) and M (τ) is the unique
solution to the regularized version of the same equation. Then, both M and M (τ) satisfy As-
sumption 1 for all z ∈ H with |z| < δ ∧ 1.

Proof. Fix z ∈ H with |z| ≤ 1 ∧ δ, τ ∈ R>0. Expanding the solution of the regularized MDE
block-wise, we obtain

M
(τ)
1,1 = ((δ − z − iτ)Intrain

− tr(M
(τ)
2,2 )KAAT − (tr(M

(τ)
2,2 ))

2KAÂTM
(τ)
4,4KÂAT )

−1

M
(τ)
2,2 = −(1 + z + iτ + ρ(M (τ)))−1Id

M
(τ)
3,3 = (iτ)−1(iτIntrain

tr(M
(τ)
2,2 )KÂÂT )M

(τ)
4,4 + (iτ)−2(tr(M

(τ)
2,2 ))

2M
(τ)
4,4KÂATM

(τ)
1,1KAÂTM

(τ)
4,4

M
(τ)
3,4 = −(iτ)−1M

(τ)
4,4

M
(τ)
4,4 = iτ((1 + τ2)I − iτ tr(M

(τ)
2,2 )KÂÂT )

−1

M
(τ)
1,3 = (iτ)−1 tr(M

(τ)
2,2 )M

(τ)
1,1KAÂTM

(τ)
4,4

M
(τ)
1,4 = − tr(M

(τ)
2,2 (z))M

(τ)
1,1 (z)KAÂTM

(τ)
4,4 (z).

It is established in Theorem 3.1 that ∥M1,1∥ ∨ ∥M2,2∥ ∨ ∥M (τ)
1,1 ∥ ∨ ∥M (τ)

2,2 ∥ ≤ (ℑ[z])−1. Fur-

thermore, by Cauchy–Schwarz, | tr(M (τ)
2,2 )| ≤ d∥M (τ)

2,2 ∥. Considering that ∥KAAT ∥ ≍ ∥KÂAT ∥ ≍
∥KÂAT ∥ ≍ ∥KÂÂT ∥ ≍ n−1, there exists a constant c1 ∈ R>0 such that ∥ tr(M (τ)

2,2 )KÂÂT ∥ ≤ c1

for every τ ∈ R>0 and n ∈ N. Therefore, taking τ → 0, we observe that ∥M (τ)
4,4 ∥, ∥M

(τ)
1,4 ∥ and

∥M (τ)
3,4 + Intest

∥ approach 0 uniformly in n.

Consequently, we may consider BlockDiag{M (τ)
1,1 ,M

(τ)
2,2 } as nearly satisfying the sub-MDE up

to an additive perturbation matrix given block-wise byD
(τ)
1,1 = (iτIntrain

+(tr(M
(τ)
2,2 ))

2KAÂTM
(τ)
4,4KÂAT )M

(τ)
1,1 ,

D
(τ)
2,2 = (iτ + tr(KAÂTM

(τ)
4,1 + KÂATM

(τ)
1,4 + KÂÂTM4,4))M

(τ)
2,2 and D

(τ)
1,2 = D

(τ)
2,1 = 0. Indeed,

D(sub) is vanishing, in norm, as τ → 0 uniformly in n. Adapting the proof of Theorem 3.2, we

leverage the stability property of the MDE to verify that ∥M (τ)
1,1 −M1,1∥∨∥M (τ)

2,2 −M2,2∥ ≲ τ .

Then, we can easily pass this convergence to M
(τ)
1,3 , M

(τ)
3,3 using the block-wise decomposition,
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and the other blocks using the fact that the solution to the regularized matrix Dyson equation
is Hermitian.

Lemma 4.5. Let z ∈ H with |z| < δ∧1 and M ∈ M be the unique solution to (15). Under the

settings of Theorem 2.1, tr(U((L− z)−1−M(z)))
a.s.−−−−→

n→∞
0 for every U ∈ Cℓ×ℓ with ∥U∥∗ ≤ 1.

Proof. Utilizing a similar argument as in the proof of Lemma 4.3, we observe that Assumption 2
is satisfied, limn→∞

√
nλ = 0, and lim supn→∞ ∥S̃∥ = 0, where λ is the Lipschitz constant

defined in Theorem 3.3. In particular, since ∥∆(L, τ ; z)∥ → 0 as n → ∞ for every τ ∈ R>0 by
Lemma 4.1, it follows from Theorem 3.3 that ∥D(τ)∥ → 0 as n → ∞ for every t ∈ R>0. By
Lemma 4.4, Assumption 1 holds. The application of Corollary 3.2 yields the desired result.

Having established that the solution to (15) acts as a deterministic equivalent for the pseudo-
resolvent (L − zΛ)−1 linked to (14), we aim to retrieve the expression in (2) by taking the
spectral parameter to 0. To accomplish this, we need further control over the MDE near the
origin.

Lemma 4.6. Let z ∈ H with |z| < δ ∧ 1 and M ∈ M the unique solution to (15). Then, for
every ϵ ∈ (0, 2−1] with (2(δ −ℜ[z])−2d2∥KAAT ∥2 − 1−ℜ[z])ϵ ≤ 2−1(1 + ℜ[z]),

1− d∥K
1
2

AATM1,1(z)K
1
2

AAT ∥2F ∥M2,2(z)∥2 ≥ ϵ.

Proof. Fix z ∈ H with |z| < 1 ∧ δ and write M ≡ M(z). Let ϵ ∈ (0, 2−1] such that

(2(δ −ℜ[z])−2d2∥KAAT ∥2 − 1−ℜ[z])ϵ ≤ 2−1(1 + ℜ[z])

and assume, by contradiction, that d∥K
1
2

AATM1,1(z)K
1
2

AAT ∥2F ∥M2,2(z)∥2 > 1 − ϵ. Using the
definition of M1,1 and M2,2 and repeatedly applying (16),

tr(KAATℜ[M1,1]) = (δ −ℜ[z]) tr(KAATM1,1M
∗
1,1)− tr(ℜ[M2,2]) tr(KAATM1,1KAATM∗

1,1)

= (δ −ℜ[z]) tr(KAATM1,1M
∗
1,1)

+ d∥M2,2∥2∥K
1
2

AATM1,1(z)K
1
2

AAT ∥2F (1 + ℜ[z])

+ d∥M2,2∥2∥K
1
2

AATM1,1(z)K
1
2

AAT ∥2F tr(KAATℜ[M1,1])

≥ (δ −ℜ[z]) tr(KAATM1,1M
∗
1,1) + (1− ϵ)(1 + ℜ[z])

+ (1− ϵ) tr(KAATℜ[M1,1]).

Solving for tr(KAATℜ[M1,1]), we obtain that tr(KAATℜ[M1,1]) = tϵ−1 with

t := (δ −ℜ[z]) tr(KAATM1,1M
∗
1,1) + (1− ϵ)(1 + ℜ[z]).

In particular, taking the real part of M2,2, we have

−ℜ[M2,2] = ∥M2,2∥2(1 + ℜ[z] + tr(KAATℜ[M1,1]))Id ⪰ ∥M2,2∥2(1 + ℜ[z] + tϵ−1)Id.

By taking the norm on both sides and leveraging the properties that the spectral norm preserves
the Loewner partial ordering and that the spectral norm of the real and imaginary part of a
complex matrix is bounded above by the spectral norm of the matrix itself, we obtain

∥M2,2∥2(1 + ℜ[z] + tϵ−1) ≤ ∥ℜ[M2,2]∥ ≤ ∥M2,2∥.
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Rearranging, this implies that ∥M2,2∥ ≤ (1+ℜ[z]+ tϵ−1)−1. By Lemma 4.2 and the definition
of ϵ,

d∥K
1
2

AATM1,1(z)K
1
2

AAT ∥2F ∥M2,2(z)∥2 ≤ (δ −ℜ[z])−2d2∥KAAT ∥2

1 + ℜ[z] + tϵ−1
≤ 2−1.

This is a contradiction. Thus, it must be the case that

1− d∥K
1
2

AATM1,1(z)K
1
2

AAT ∥2F ∥M2,2(z)∥2 ≥ ϵ

for every ϵ ∈ (0, 2−1] with (2δ−2d2∥X∥4 − 1−ℜ[z])ϵ ≤ 2−1(1 + ℜ[z]).

The statement of Lemma 4.6 is intricate because the left-hand side of the inequality (2δ−2d2∥KAAT ∥2−
1−ℜ[z])ϵ ≤ 2−1(1+ℜ[z]) may be negative. Nevertheless, the essence of Lemma 4.6 lies in the

fact that the quantity 1 − d∥K1/2

AATM1,1(z)K
1/2

AAT ∥2F ∥M2,2(z)∥2 can be consistently bounded
away from 0 regardless of the dimension.

Now that we have some control on the solution of the MDE when the spectral parameter is
close to the origin, we still need to continuously extend the function M to its boundary point 0.
To do so, we analytically extendM by reflection to the lower complex plane {z ∈ H : ℑ[z] < 0}
through an open interval containing the origin.

Lemma 4.7. The unique solution to (4) M can be extended analytically to the lower-half
complex plane through the open interval (−(1 ∧ δ), 1 ∧ δ).

Proof. Using the definition of matrix imaginary part and the resolvent identity, we obtain the
system of equations{

ℑ[M1,1] = M1,1(ℑ[z] + tr(ℑ[M2,2])KAAT )(M1,1)
∗

tr(ℑ[M2,2]) = d∥M2,2∥2(ℑ[z] + tr(KAATℑ[M1,1])).

Combing the two equalities, we get

d−1 tr(ℑ[M2,2])
(
1− ∥

√
dK

1
2

AATM1,1(z)K
1
2

AAT ∥2F ∥M2,2∥2
)
= ∥M2,2∥2ℑ[z](1 + ∥

√
dK

1
2

AATM
(1)
1,1∥2F ).

By Lemma 4.6, 1 − d∥K
1
2

AATM1,1(z)K
1
2

AAT ∥2F ∥M2,2(z)∥2 > 0 uniformly on {z ∈ H : |z| ≤ ϵ}
for every 0 < ϵ < 1 ∧ δ. Using Lemma 4.2,

d−1 tr(ℑ[M2,2]) ≤
ℑ[z](1 + ∥

√
d(δ −ℜ[z])−1K

1
2

AAT ∥2F )

1− ∥
√
dK

1
2

AATM1,1(z)K
1
2

AAT ∥2F ∥M2,2∥2
.

Thus, we observe that ℑ[M2,2(z)] ↓ 0 uniformly as ℑ[z] ↓ 0 on (−ϵ, ϵ) and similarly for
∥ℑ[M1,1]∥. Since M1,1 and M2,2 fully define the solution of the MDE, ∥ℑ[M(z)]∥ vanishes
uniformly for ℜ[z] ∈ (−ϵ, ϵ) as ℑ[z] ↓ 0.

By Stieltjes inversion lemma, the positive semidefinite measure in Theorem 3.1 has no
support in (−ϵ, ϵ). We conclude with [GT97, Lemma 5.6].

We may now remove the spectral parameter in Lemma 4.5.

Corollary 4.1. Let M ∈ M be the unique solution to (15). Under the settings of Theorem 2.1,

tr(U(L−1 −M(0)))
a.s.−−−−→

n→∞
0 for every U ∈ Cℓ×ℓ with ∥U∥∗ ≤ 1.
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(15) has a very nice property: it is fully defined by the scalar tr(M2,2). By fully defined,
we mean that if we can compute tr(M2,2) we may explicitly construct the full solution of the
MDE. Using the sub-MDE defined above, we get the following numerical result.

Lemma 4.8. Suppose that M(0) solves (15) when z = 0. Let

T : x ∈ R<0 7→ −
(
1 + tr

(
KAAT (δIntrain − dxKAAT )−1

))−1 ∈ R<0

and consider the iterates {αk}k∈N0
obtained via αk+1 = T (αk) for every k ∈ N with arbitrary

α0 ∈ R≤0. Then,

M(0) =


(δIntrain

− dαKAAT )−1 0 −dαM1,1(0)KAÂT 0
0 αId 0 0

−dαKÂATM1,1(0) 0 (dα)2KÂATM1,1(0)KAÂT + dαKÂÂT −Intest

0 0 −Intest
0


where α := d−1 tr(M2,2(0)) = limk→∞ αk.

Proof. In order to use Earle-Hamilton fixed-point theorem [EH70], we consider the set S of
complex matrices N ∈ Cℓ×ℓ with N1,2 = N2,1 = 0, ℜ[N1,1] ≻ 0 and ℜ[N2,2] ≺ 0. Slightly
abusing notation, consider

F (sub) : N ∈ S 7→ (EL− S(sub)(N))−1 ∈ S

with S := {N ∈ Cℓ×ℓ : ℜ[N1,1] ≻ 0, ℜ[N2,2] ≺ 0, N1,2 = N2,1 = 0}. Using an argument
analogous to the one in [HFS07], we get the existence of a unique matrix N ∈ S such that
F (sub)(N) = N . By uniqueness, N = M1,1(0). Additionally, by Earle-Hamilton fixed point
theorem, the sequence {Nk : k ∈ N0} with Nk+1 = F (sub)(Nk) for every k ∈ N converges to
M1,1(0) for every N0 ∈ S . Choosing N0 = BlockDiag{Intrain , α0Id} gives the result.

4.2. Second deterministic equivalent

We now consider the squared matrix (AAT + δIntrain
)−1AÂT ÂAT (AAT + δIntrain

)−1. Notice
that

(L−2)1,1 = R2 +RATAR+RAÂT ÂAR

and (L(sub))−2
1,1 = R2 +RATAR for R := (AAT + δIntrain

)−1. Rearranging, we get that

(AAT + δIntrain)
−1AÂT ÂA(AAT + δIntrain)

−1 = (L−2)1,1 − (L(sub))−2
1,1. (17)

Therefore, it suffices to find deterministic equivalents for (L(sub))−2 and L−2 to obtain an

anisotropic law for the random matrix (AAT + δIntrain)
−1AÂT ÂA(AAT + δIntrain)

−1.

Lemma 4.9. Under the settings of Theorem 2.1, let α = d−1 tr(M2,2(0)) as in Lemma 4.8,
R = (AAT + δIntrain

)−1 and define

β =
α2 tr

(
KÂÂT + dαKÂATM1,1(0)(Intrain

+ δM1,1(0))KAÂT

)
1− ∥

√
dαK

1
2

AATM1,1(0)K
1
2

AAT ∥2F
∈ R≥0.

Then, trU(RAÂT ÂATR− dβM1,1(0)KAATM1,1(0)−M1,3(0)M3,1(0))
a.s.−−−−→

n→∞
0 for every U ∈

Cntrain×ntrain with ∥U∥∗ ≤ 1.
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Proof. First, we note that iτ 7→ (L − iτ)−1 is an analytic function with ∂iτ (L − iτ)−1 =
(L− iτ)−2. Overloading notation, let M (ζ) ∈ M+ be the unique solution to the MDE (EL−
S(M (ζ))− ζIℓ)M

(ζ) = Iℓ where ζ ∈ H. By the proof of [EKN20, Theorem 2.14], the function
ζ 7→ M (ζ)(0) is analytic on H. Adapting a general argument resembling to the one in [SCDL23,
equation (174)], it follows from Cauchy’s integral formula that

(L− iτ)−2 − ∂iτM
(τ)(0) = ∂iτ

(
(L− iτ)−1 −M (τ)(0)

)
=

1

2π

∮
γ

(L− ζ)−1 −M (ζ)(0)

(ζ − iτ)2
dζ

where γ forms a counterclockwise circle of radius τ/2 around iτ . We know that M (ζ)(0) is
a deterministic equivalent for (L − ζ)−1 for every fixed ζ ∈ H. By the resolvent identity,
ζ 7→ (L− ζIℓ) is 4/θ

2-Lipschitz on {z ∈ H : ℑ[z] ≥ τ/2}. Similarly, by the proof of [EKN20,
Theorem 2.14], the function ζ 7→ M (ζ) is (2/τ)12-Lipschitz on {z ∈ H : ℑ[z] ≥ τ/2}. Therefore,
we obtain tr(U((L − iτ)−2 − ∂iτM

(τ)(0)))
a.s.−−−−→

n→∞
0 for every τ ∈ R>0 and U ∈ Cℓ×ℓ with

∥U∥∗ ≤ 1. Taking the derivative of (7), we obtain ∂iτM
(τ)(0) = M (τ)(0)(S(∂iτM (τ)(0)) +

Iℓ)M
(τ)(0) or, relating this equation to the stability operator, L(τ)(∂iτM

(τ)(0)) = (M (τ)(0))2

with L(τ) : N ∈ Cℓ×ℓ 7→ N −M (τ)(0)S(N)M (τ)(0).
In what follows, we omit the argument of M (τ) and write M (τ) ≡ M (τ)(0). Using easy

but tedious computations, we decompose ∂iτM
(τ)
j,k = Cj,k + Dj,k tr(∂iτM

(τ)
2,2 ) for every j, k ∈

{(1, 1), (1, 4), (4, 4)} with

C1,1 := M
(τ)
1,4M

(τ)
4,1 + (M

(τ)
1,1 )

2 +M
(τ)
1,3M

(τ)
3,1 ,

D1,1 := M
(τ)
1,1KAATM

(τ)
1,1 +M

(τ)
1,1AÂTM

(τ)
4,1 +M

(τ)
1,4KÂATM

(τ)
1,1 +M

(τ)
1,4KÂÂTM

(τ)
4,1 ,

C4,4 := M
(τ)
4,1M

(τ)
1,4 + (M

(τ)
4,4 )

2 +M
(τ)
4,3M

(τ)
3,4 ,

D4,4 := M
(τ)
4,1KAATM

(τ)
1,4 +M

(τ)
4,1KAÂTM

(τ)
4,4 +M

(τ)
4,4KÂATM

(τ)
1,4 +M

(τ)
4,4KÂÂTM

(τ)
4,4 ,

C1,4 := M
(τ)
1,1M

(τ)
1,4 +M

(τ)
1,4M

(τ)
4,4 +M

(τ)
1,3M

(τ)
3,4 , and

D1,4 := M
(τ)
1,1KAATM

(τ)
1,4 +M

(τ)
1,1KAÂTM

(τ)
4,4 +M

(τ)
1,4KÂATM

(τ)
1,4 +M

(τ)
1,4KAATM

(τ)
4,4 .

Taking the trace of the 2, 2 block of ∂iτM
(τ)(0), we get

tr(∂iτM
(τ)
2,2 ) = tr((M

(τ)
2,2 )

2)(ρ(∂iτM
(τ)) + 1)

= tr((M
(τ)
2,2 )

2)(tr(KAATC1,1 +KAÂTC
T
1,4 +KÂATC1,4 +KÂÂTC4,4) + 1)

+ tr(∂iτM
(τ)
2,2 ) tr((M

(τ)
2,2 )

2) tr(KAATD1,1 +KAÂTD
T
1,4 +KÂATD1,4 +KÂÂTD4,4).

By the proof of Lemma 4.5, we observe that there exists a function f : R>0 7→ R≥0 with
limτ↓0 f(τ) = 0 such that ∥D4,4∥ ≤ f(τ) + on(1), ∥D1,1 − M1,1KAATM1,1∥ ≤ f(τ) + o(1),

∥D1,4∥ = ∥DT
4,1∥ ≤ f(τ)+on(1) and ∥M (τ)

2,2−M2,2∥ ≤ f(τ)+on(1). Since lim supn→∞ d∥KAAT ∥ =

lim supn→∞ d∥Ea1aT1 ∥ ≤ lim supn→∞ E∥A∥2 < ∞, we have

lim inf
n→∞

sup{ϵ ∈ [0, 2−1] : (2δ−2d2∥KAAT ∥2 − 1−ℜ[z])ϵ ≤ 2−1(1 + ℜ[z])} > 0

by Lemma 4.6 and, consequently,

|1− tr
(
(M

(τ)
2,2 )

2
)
tr(KAATD1,1 +KAÂTD4,1 +KÂATD1,4 +KÂÂTD4,4)| ≫ 0
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for every n ∈ N large enough and τ ∈ R>0 small enough. In particular, the limit limτ↓0 ∂iτM
(τ)

exists and satisfies

lim
τ↓0

d−1 tr(∂iτM
(τ)
2,2 ) =

α2(tr(KAATM2
1,1 +KAATM1,3M3,1 −KAÂTM3,1 −KÂATM1,3 +KÂÂT ) + 1)

1− ∥
√
dαK

1
2

AATM1,1(0)K
1
2

AAT ∥2F

= β +
α2(1 + tr(KAATM2

1,1))

1− ∥
√
dαK

1
2

AATM1,1(0)K
1
2

AAT ∥2F

where we recall that α = d−1 tr(M2,2) as defined in Lemma 4.8. Plugging this into the expres-

sion for ∂iτM
(τ)
1,1 and taking the limit as τ ↓ 0, we get that

dβM1,1KAATM1,1 +M1,3M3,1 +M2
1,1 +

dα2(1 + tr(KAATM2
1,1))

1− ∥
√
dαK

1
2

AATM1,1(0)K
1
2

AAT ∥2F
M1,1KAATM1,1

is an asymptotic deterministic equivalent for (L−2)1,1.
Using a similar argument, we note that ∂zM

(sub)(0) is a deterministic equivalent for (L(sub))−2

and

∂zM
(sub)
1,1 = M2

1,1 +
dα2(1 + tr(KAATM2

1,1))

1− ∥
√
dαK

1
2

AATM1,1(0)K
1
2

AAT ∥2F
M1,1KAATM1,1.

We obtain the result by (17).

5. Concluding remarks

In conclusion, our work extended the matrix Dyson equation framework to accommodate lin-
earizations with general correlation structures. This extension allowed us to derive an asymp-
totically exact expression for the empirical test error of random features ridge regression.

Looking forward, our matrix Dyson equation framework holds promise for analyzing the
largest eigenvalue of an anisotropic version of the conjugate kernel, thereby extending existing
research in this direction [BP22]. While our result on the empirical test error has its limitations,
we believe there are avenues for improvement. Firstly, the assumption of norm of the random
features matrices being bounded in L4 might be relaxed, allowing for more general scenarios,
such as low-rank spikes, which could be explored with a more delicate analysis. Secondly, our
empirical simulations, see Figure 1 for instance, suggest that the result might extend beyond
Lipschitz activation functions, opening up possibilities for further exploration in this direction.
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Appendix A: Theory for the linearized matrix Dyson equation

This section of the supplement is dedicated to establishing a framework, grounded in the
matrix Dyson equation, for deriving anisotropic global laws for general pseudo-resolvents. We
commence with a recapitulation of the settings, mirroring the presentation in the main text,
supplemented by additional definitions crucial to our analysis. Subsequently, we introduce key
properties of the matrix Dyson equation, laying the groundwork for proving the existence of
a unique solution and demonstrating an asymptotic stability property.

A.1. Settings

We focus on a class of real5 self-adjoint linearizations denoted as

L =

[
A BT

B Q

]
∈ Rℓ×ℓ, (18)

where A ∈ Rn×n is a potentially random self-adjoint complex matrix, Q ∈ Rd×d is a deter-
ministic invertible self-adjoint matrix and B ∈ Rd×n is a potentially random arbitrary matrix.
Our primary interest lies in analyzing the behavior in high dimensions of the pseudo-resolvent
(L − zΛ)−1, where Λ := BlockDiag{In×n, 0d×d} and z ∈ H := {z ∈ C : ℑ[z] > 0} represents
the upper half of the complex plane.

Our framework relies on the linearized matrix Dyson equation (MDE)

(EL− S(M)− zΛ)M = Iℓ, (19)

where the spectral parameter z is chosen from the upper half complex plane H. Here, the
super-operator

S : M ∈ Cℓ×ℓ 7→ E
[
[(L− EL)M(L− EL)]1,1 (A− EA)M1,1(B

T − EBT )

(B − EB)M1,1(A− EA) (B − EB)M1,1(B − EB)T

]
∈ Cℓ×ℓ. (20)

is a positivity-preserving linear map which encodes the second moment of L. For conciseness,
we let s ∈ R>0 such that ∥S(W )∥ ≤ s∥W∥ for every W ∈ Cℓ×ℓ, but also ∥Si,j(W )∥ ≤
s∥W1,1∥ for all (i, j) ∈ {(1, 2), (2, 1), (2, 2)} and W ∈ Cℓ×ℓ. This condition is reminiscent
of the upper-bound in the flatness condition commonly assumed in matrix Dyson equation
literature [Erd19, AEKN19, Alt18]. Consequently, we will adopt this terminology to refer to
this condition.

In order to ensure the existence of a unique solution to the matrix Dyson equation, we need
to restrict (19) to a suitable set. Consequently, we introduce the admissible set6

M := {f : H 7→ A analytic} , A := {W ∈ Cℓ×ℓ : ℑ[W ] ⪰ 0 and ℑ[W1,1] ≻ 0}. (21)

Our primary strategy for analyzing (19) involves initially establishing analogous results
for a regularized version of the equation. This regularization typically simplifies the problem,

5Our framework can easily be extended to complex linearizations L ∈ Cℓ×ℓ with ℑ[L] ⪯ 0. Because we do
not have any application for this generalization in mind, we do not pursue this direction for the sake of clarity.

6Alternatively, assuming that A = EA and EB = 0, we can choose S(M) = E[(L − EL)M(L − EL)] and
consider the set

A := {W ∈ Cℓ×ℓ : ℑ[W ] ⪰ 0 and ℑ[W1,1] ≻ 0, W1,2 = W2,1 = 0}.
Applying our framework under these assumptions requires no modifications, making it particularly suitable,
for example, for the study of powers of Wigner matrices.
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enabling us to leverage existing knowledge. Subsequently, we demonstrate the feasibility of
setting the regularization parameter to zero, effectively reverting to the original equation.
Importantly, we ensure that the statements derived for the regularized variant remain valid in
this limit, thereby providing valuable insights into the properties of (19). For this reason, we
introduce the regularized matrix Dyson equation (RMDE)

(EL− S(M (τ))− zΛ− iτIℓ)M
(τ) = Iℓ (22)

for every τ > 0. The corresponding admissible set is given by

M+ := {f : H 7→ A+ analytic} , A+ := {W ∈ Cℓ×ℓ : ℑ[W ] ≻ 0} ∩ A . (23)

It will be convenient to sometimes view (19) as a fixed point equation, so we introduce the
MDE map

F : f ∈ M 7→ (EL− S(f(·))− (·)Λ)−1 ∈ M , (24)

assuming its well-definedness, which we establish in Lemmas A.1 and A.2. With this definition,
we can reexpress the MDE (19) as M = F(M). Whenever convenient, we will fix a spectral
parameter z ∈ H and operate with F over A . Similarly, the formulation of (22) becomes
M (τ) = F (τ)(M (τ)), where

F (τ) : f ∈ M+ 7→ (EL− S(f(·))− (·)Λ− iτIℓ)
−1 ∈ M+ (25)

is the RMDE map.
For every τ ∈ R≥0, let

M
(τ)
⋆ = (Q− iτId)

−1
and M (τ)

∞ =

[
0n×n 0n×d

0d×n M
(τ)
⋆

]
(26)

such that ℑ[M (τ)
∗ ] ⪰ 0 and denote M⋆ = M

(0)
⋆ , M∞ = M

(0)
∞ . We remind the reader that Q

denotes the deterministic invertible lower-right d× d submatrix of the linearization L. We will

see in Lemma A.4 that M
(τ)
⋆ corresponds precisely to the limit of M (τ)(z) as |z| diverges to

infinity in the upper-half complex plane.
Since the RMDE (22) corresponds to the MDE (19) when τ = 0, we will always write

M (0) = M , F (0) = F , etc. Unless stated otherwise, we will assume that z ∈ H is fixed
throughout the section. We will abuse notation and omit to write the dependence of M on z,
using M ≡ M(z) instead.

A.2. Main Properties

In this subsection, we will present and prove a series of properties of the (R)MDE. By doing
so, we are essentially laying the groundwork for demonstrating the existence and uniqueness
of a solution to the linearized MDE, as well as establishing its stability.

A.2.1. General properties

As mentioned earlier, the main challenge in our current framework arises from the fact that
(EL− S(M)− zΛ)−1 is not a resolvent. Consequently, the MDE does not directly inherit the
desirable properties of the resolvent, such as simple bounds that only depend on the spectral
parameter z. For instance, it is not immediately evident whether EL − S(M) − zΛ is even
invertible. The following lemma resolves this issue.
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Lemma A.1. Let τ ∈ R≥0 and W ∈ A . Then, EL− S(W )− zΛ− iτIℓ is invertible.

Proof. LetW ∈ A be arbitrary. By definition of A , ℑ[W ] ⪰ 0. Since S is positivity-preserving,
ℑ[S(W )] ⪰ 0. If τ > 0, it follows directly that ℑ[EL−S(W )− zΛ− iτIℓ] ⪯ −τ , which implies
that EL− S(W )− zΛ− iτIℓ is non-singular.

Assume that τ = 0 and let v∗ = (v∗1 , v
∗
2) with v1 ∈ Cn and v2 ∈ Cd be a unitary vector

in the kernel of EL − S(W ) − zΛ. We will show that v = 0 and conclude that the kernel of
EL− S(W )− zΛ is trivial. Decomposing EL− S(W )− zΛ into its real and imaginary parts,
we have

0 = v∗(EL− S(W )− zΛ)v = v∗ℜ[EL− S(W )− zΛ]v + iv∗ℑ[EL− S(W )− zΛ]v.

Since both ℜ[EL−S(W )−zΛ] and ℑ[EL−S(W )−zΛ] are Hermitian, the quadratic forms are
real and v∗ℜ[EL−S(W )−zΛ]v = v∗ℑ[EL−S(W )−zΛ]v = 0. By definition of the admissible
set, ℑ[S1,1(W )] ⪰ 0 which implies that the imaginary part of the upper-left n × n block of
EL− S(W )− zΛ is negative definite. Consequently, it must be the case that v1 = 0.

Returning to the equation (EL− S(W )− zΛ) v = 0, we have in particular that (Q− S2,2(W )) v2 =
0. Left-multiplying by v∗2 and decomposing the matrix Q−S2,2(W ) into its real and imaginary
parts,

0 = v∗2ℜ[Q− S2,2(W )]v2 + iv∗2ℑ[Q− S2,2(W )]v2.

Again, since the real and imaginary parts of a matrix are Hermitian, the quadratic forms are
real and v∗2S2,2(ℑ[W ])v2 = −v∗2ℑ[Q−S2,2(W )]v2 = 0. By definition of S2,2, v

∗
2S2,2(ℑ[W ])v2 =

Ev∗2(B − EB)ℑ[W1,1](B − EB)T v2. Since W ∈ A , ℑ[W1,1] ≻ 0 and (B − EB)T v2 = 0 almost
surely. Going back to the equation (Q− S2,2(W )) v2 = 0, we obtain Qv2 = 0. However, Q is
non-singular so v2 = 0.

For every W ∈ A , τ ∈ R≥0 and z ∈ H, the Schur complement of the lower-right d×d block
of the matrix EL−S(W )−zΛ−iτIℓ, EA−S1,1(W )−(z+iτ)In, has negative definite imaginary
part. Hence, the Schur complement is non-singular. By [LS02, Theorem 2.1], this implies that
the matrix EL − S(W ) − zΛ − iτIℓ is invertible if and only if its lower-right d × d block is.
Since we established non-singularity of the full matrix, we obtain the following corollary.

Corollary A.1. Let τ ∈ R≥0 and W ∈ A . Then, the diagonal blocks of (EL− S(W )− zΛ−
iτIℓ)

−1 are invertible.

This lemma provides insight into the invertibility of EL − S(M) − zΛ and establishes the
foundation for considering the MDE (22) as a fixed point equation F(M) = M , along with
its regularized counterpart. This perspective allows us to explore the existence and uniqueness
of solutions by leveraging the extensive theory on fixed points. A first step in this direction
is showing that F and F (τ) both map their respective domains to themselves. We adapt the
argument from [HFS07].

Lemma A.2. Let τ ∈ R≥0, z ∈ H and W ∈ A . Then,

ℑ[F (τ)(W )] ⪰ τF (τ)(W )(F (τ)(W ))∗, ℑ[F (τ)
1,1 (W )] ⪰ ℑ[z]F (τ)

1,1 (W )(F (τ)
1,1 (W ))∗

and ∥F (τ)
1,1 (W )∥ ≤ (ℑ[z])−1. Furthermore, if τ > 0, then ∥F (τ)(W )∥ ≤ τ−1.
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Proof. By Lemma C.6,

ℑ[F (τ)(W )] = F (τ)(W )ℑ[zΛ + iτIℓ + S(W )− EL](F (τ)(W ))∗

= F (τ)(W )ℑ[zΛ + iτIℓ + S(W )](F (τ)(W ))∗

Since ℑ[W ] ⪰ 0 and the super-operator is positivity-preserving, ℑ[zΛ+ iτIℓ + S(W )− EL] ⪰
ℑ[zΛ + iτIℓ]. In particular,

ℑ[F (τ)(W )] ⪰ F (τ)(W )ℑ[zΛ + iτIℓ](F (τ)(W ))∗ ⪰ ℑ[z]F (τ)(W )Λ(F (τ)(W ))∗.

Taking the upper-left n× n block in the equation above,

ℑ[F (τ)
1,1 (W )] ⪰ ℑ[z]F (τ)

1,1 (W )(F (τ)
1,1 (W ))∗ ≻ 0.

Since the (operator) norm preserve the Loewner ordering of positive semidefinite matrices, it
follows from Lemma C.5 that

∥F (τ)
1,1 (W )∥ ≥ ∥ℑ[F (τ)

1,1 (W )]∥ ≥ ℑ[z]∥F (τ)
1,1 (W )∥2

Rearranging, we get the bound on ∥F (τ)
1,1 (W )∥. We obtain the bound ∥F (τ)(W )∥ ≤ τ−1 using

an analogous argument.

The definitions of F and F (τ) in (24), (25) and the choice of sets in (21),(23) is supported by
Lemmas A.1 and A.2. The lemma demonstrates that both maps map their respective domains
to themselves.7 This observation leads us to consider the possibility of proving the existence
of a solution to the MDE by arguing that F is a contraction. However, it is important to
note that Lemma A.2 also reveals a weaker control of the MDE in comparison to the RMDE.
Specifically, we only have a norm bound on the upper-left n× n block of the map F .

Nevertheless, we will leverage the favorable properties of the RMDE to establish the exis-
tence and uniqueness of a solution to (22). Subsequently, we will argue that the unique solution
of the RMDE (22) converges to a solution of the MDE (19) as τ approaches zero. To accomplish

this, a crucial step will be to lower bound the smallest singular value of ℑ[M (τ)
1,1 ] uniformly in

τ , ensuring that limτ↓0 ℑ[M (τ)
1,1 ] ≻ 0. This bound on the smallest eigenvalue of the imaginary

part of M
(τ)
1,1 , combined with Lemma A.2, plays a vital role in controlling ∥M (τ)∥ as τ ↓ 0.

In what follows, we will take advantage of the block structure of the (R)MDE. Using the
Schur complement formula, we decompose (19) as

M1,1 =(EA− (EBT − S1,2(M))C−1(EB − S2,1(M))− S1,1(M)− zIn)
−1, (27a)

M2,2 =((EB − S2,1(M)) (zIn + S1,1(M)− EA)
−1

(EBT − S1,2(M))− S2,2(M) +Q)−1,
(27b)

M1,2 = − F1,1(M)(EBT − S1,2(M))C−1 and (27c)

M2,1 = − C−1(EB − S2,1(M))F1,1(M) (27d)

where C = Q− S2,2(M). It may sometimes be practical to work with the equivalent form

M2,2 = C−1 + C−1(EB − S2,1(M))F1,1(M)(EBT − S1,2(M))C−1. (27e)

We may decompose (22) similarly. In this case, we will write C(τ) = Q− S2,2(M
(τ))− iτId.

7To be more precise, we also need F and F (τ) to be holomorphic functions. However, this is clear from
definition.
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A.2.2. Large spectral parameter

Considering that Lemma A.2 ensures that any solution M to (19) must satisfy M1,1(z) ≤
(ℑ[z])−1 for every z ∈ H, it is natural to consider the behavior of M(z) for z ∈ H with
ℑ[z] in a neighborhood of infinity. The following lemma, which is reminiscent of a condition
for the Nevanlinna representation theorem, demonstrates that ℑ[M(z)] converges to fixed
deterministic quantity as ℑ[z] increases.

Lemma A.3. Fix τ ∈ R≥0 and assume that M ∈ M such that, for all z ∈ H, M(z) solves
the RMDE (22). Then, ∥M(z)−M∞∥ → 0 as ℑ[z] → ∞.

Proof. We proceed block-wise. By Lemma A.2, it is clear that ∥F (τ)
1,1 (M(z))∥ → 0 as ℑ[z] → ∞.

By Lemma C.6 and the fact that the super-operator is positivity-preserving,

ℑ[(EA− zIn − S1,1(M(z)))
−1

] ⪰ ℑ[z] (zIn + S1,1(M(z))− EA)
−1

(zIn + S1,1(M(z))− EA)
−∗

which implies that ∥(zIn + S1,1(M(z)) − EA)−1∥ ≤ (ℑ[z])−1 → 0 as ℑ[z] → ∞. By flatness
and definition of the superoperator, max{∥S1,2(M)∥, ∥S2,1(M)∥, ∥S2,2(M)∥} ≤ s∥M1,1∥ → 0
as ℑ[z] → ∞. Hence,

∥(EB − S2,1(M)) (zIn + S1,1(M)− EA)
−1

(EBT − S1,2(M))− S2,2(M)∥ ℑ[z]↑∞−−−−−→ 0

and, using the block-wise decomposition of M2,2 in (27b) as well as the definition of M
(τ)
∗ in

(26), ∥M2,2(z)−M
(τ)
∗ ∥ → 0 as ℑ[z] → ∞.

Finally, using the decomposition in (27c), (27d) and the fact that ||(S2,2(M(z)) + iτId −
Q)−1|| is bounded as ℑ[z] increases, it follows that both ||M1,2(z)|| and ||M2,1(z)|| vanish as
ℑ[z] approaches infinity.

The purpose of Lemma A.3 is to play an intermediate role in establishing the existence
and uniqueness of solutions. However, our ultimate goal is to characterize the underlying real
spectral measure that is encoded in the pseudo-resolvent.

While the pseudo-resolvent and the (R)MDE exhibit favorable behavior when the spectral
parameter is far away from the spectrum, it is important to note that the spectral information is
primarily contained in the poles located at the eigenvalues of the underlying matrix. Therefore,
in order to extract meaningful information about the spectrum of the pseudo-resolvent, we need
to bring the spectral parameter close to the real line.

To accomplish this, the next lemma constructs a loose bound on the norm of any solution
to (22), which holds for every spectral parameter large enough in norm regardless of the
magnitude of its imaginary part. This bound allows us to explore the behavior of the solution
for large spectral values without being restricted by its imaginary part.

Lemma A.4. Fix τ ∈ R≥0 and assume that M ∈ M such that, for all z ∈ H, M(z) solves the

RMDE (22). Then, there exists some constant c ∈ R>0 such that ∥M(z)−M
(τ)
∞ ∥ ≤ c(|z|−κ)−1

for all z ∈ {z ∈ H : |z| > κ+cκ−1} with κ := 2∥(Q−iτId)
−1∥(||EB||+(2∥(Q−iτId)

−1∥)−1)2+

||EA||+ (2∥(Q− iτId)
−1∥)−1 + s||M (τ)

∞ ||.

Proof. Fix z ∈ H with |z| > κ and let M ≡ M(z). For clarity, we denote a = ||EA||, b = ||EB||,
m = ||M (τ)

∞ || and q = ∥(Q− iτId)
−1∥. We will show that ∥M(z)−M

(τ)
∞ ∥ /∈ (c(|z|−κ)−1, κ] for

every z ∈ H with |z| > κ+ cκ−1. By Lemma A.3, ∥M(z)−M
(τ)
∞ ∥ is in a neighborhood of the
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origin for every z ∈ H with ℑ[z] large enough. Since z 7→ ∥M(z)−M
(τ)
∞ ∥ is a continuous function

on {z ∈ H : |z| > κ + cκ−1}, this will imply that ∥M({z ∈ H : |z| > κ + cκ−1}) −M
(τ)
∞ ∥ ⊆

[0, c(|z|−κ)−1]. Suppose that ||M−M
(τ)
∞ || ≤ (2sq)−1 such that ∥M∥ ≤ ∥M−M

(τ)
∞ ∥+∥M (τ)

∞ ∥ ≤
(2sq)−1 +m. Again, we consider the blocks separately using (27).

By definiftion of S2,2, ∥S2,2(M)∥ ≤ s∥M1,1∥ ≤ (2q)−1. It follows from Lemma C.2 that

∥ (S2,2(M) + iτId −Q)
−1 ∥ ≤ ∥(Q− iτId)

−1
(
S2,2(M)(Q− iτId)

−1 − Id
)−1 ∥ ≤ 2q.

Furthermore, by subadditivity of the spectral norm,

∥(EBT + S1,2(M)) (S2,2(M) + iτId −Q)
−1

(EB + S2,1(M)) + EA− S1,1(M)∥
≤ 2q(b+ (2q)−1)2 + a+ (2q)−1 + sm = κ < |z|.

By (27a) and Lemma C.2, ||M1,1|| ≤ (|z| − κ)−1. We now turn our attention to M2,2. Using
Lemma C.1 and equation (27b),

M2,2 −M
(τ)
⋆ = M2,2S2,2(M)M

(τ)
⋆

−M2,2(EB + S2,1(M)) ((z + iτ)In + S1,1(M)− EA)
−1

(EBT + S1,2(M))M
(τ)
⋆

By Lemma C.2, ∥((z + iτ)In + S1,1(M)− EA)−1∥ ≤ (|z| − (2q)−1 − sm− a)−1. Thus,

∥M2,2 −M
(τ)
⋆ ∥ ≤ m((2sq)−1 +m)s∥M1,1∥

+m((2sq)−1 +m)(b+ (2q)−1)2
(
|z| − (2q)−1 − sm− a

)−1
.

Plugging the bound for ∥M1,1∥ derived above and simplifying,

∥M2,2 −M
(τ)
⋆ ∥ ≤ m(s+ (b+ (2q)−1)2)((2sq)−1 +m)(|z| − κ)−1.

It only remains to treat ||M1,2|| and ||M2,1||, which we directly bound by

max{∥M1,2∥, ∥M2,1∥} ≤ 2(b+ (2q)−1)q∥M1,1∥ ≤ 2(b+ (2q)−1)q(|z| − κ)−1

using (27c),(27d).
To summarize, we showed that for every z ∈ H with |z| > sm+(2q)−1+a+2q(b+(2q)−1)2,

||M(z)−M
(τ)
∞ || ≤ (2sq)−1 implies that

∥M(z)−M (τ)
∞ ∥ ≤ ∥M1,1(z)∥+ ∥M1,2∥+ ∥M2,1∥+ ∥M2,2 −M

(τ)
⋆ ∥ ≤ c(|z| − κ)−1

with c := 1 + m(s + (b + (2q)−1)2)((2sq)−1 + m) + 4(b + (2q)−1)q. Choosing |z| > κ + cκ−1

completes the proof.

The proof of Lemma A.4 provides important bounds which are not explicitly stated in the
statement of the lemma. We continue our treatment of the RMDE by upper-bounding the
imaginary part of any solution to the RMDE when the spectral parameter is far away from
the support.

Lemma A.5. Fix τ ∈ R≥0 and assume that M ∈ M such that, for all z ∈ H, M(z) solves
the RMDE (22). Let κ and c be defined as in Lemma A.4. Then, there exists κ+ ≥ κ+ cκ−1

and constant c∗ ∈ R>0 such that ∥ℑ[M1,1(z)]∥ ≤ c∗(|z| − κ)−2(τ + ℑ[z]) for every z ∈ {z ∈
H : |z| ≥ κ+}. In particular, if τ = 0, then ∥ℑ[M(z)]∥ converges uniformly to 0 as ℑ[z] ↓ 0
on {z ∈ H : ℜ[z] ≥ κ+}
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Proof. Let z ∈ H with |z| > κ + cκ−1 and denote M = M(z). Furthermore, let m ≡ m(z) =
c(|z|−κ)−1 be the bound in Lemma A.4. By Lemma C.6,(25), ℑ[M ] = M (ℑ[z]Λ + τIℓ + S(ℑ[M ]))M∗.
Decomposing block-wise and recalling that M∗

i,j = (Mi,j)
∗ denotes the conjugate transpose of

the (i, j) sub-block, we get

ℑ[M1,1] = M1,1 ((ℑ[z] + τ)In + S1,1(ℑ[M ]))M∗
1,1 +M1,1S1,2(ℑ[M ])M∗

1,2

+M1,2S2,1(ℑ[M ])M∗
1,1 +M1,2 (τIn + S2,2(ℑ[M ]))M∗

1,2,

ℑ[M2,1] = M2,1 ((ℑ[z] + τ)In + S1,1(ℑ[M ]))M∗
1,1 +M2,1S1,2(ℑ[M ])M∗

1,2

+M2,2S2,1(ℑ[M ])M∗
1,1 +M2,2 (τIn + S2,2(ℑ[M ]))M∗

2,2,

ℑ[M1,2] = (ℑ[z] + τ)M1,1M
⋆
2,1 +M1,1S1,1(ℑ[M ])M∗

2,1 +M1,1S1,2(ℑ[M ])M∗
2,2

+M1,2S2,1(ℑ[M ])M∗
2,1 + τM1,2M

∗
2,1 +M1,2S2,2(ℑ[M ])M∗

2,2

and

ℑ[M2,2] = (ℑ[z] + τ)M2,1M
⋆
2,1 +M2,1S1,1(ℑ[M ])M∗

2,1 +M2,1S1,2(ℑ[M ])M∗
2,2

+M2,2S2,1(ℑ[M ])M∗
2,1 + τM2,2M

∗
2,1 +M2,2S2,2(ℑ[M ])M∗

2,2.

By Lemma A.4, ∥M1,1∥ ∨ ∥M1,2∥ ∨ ∥M2,1∥ ≤ m and ∥M∥ ≤ ∥M − M∞∥ + ∥M∞∥ ≤
m+ ∥M∞∥. For simplicity, we let m∞ = ∥M∞∥. If we take the norm of the expansion above,
we may bound every term ∥M1,1∥, ∥M1,2∥ and ∥M2,1∥ by m and ∥M2,2∥ by m + m∞. Let
x = ∥S1,2(ℑ[M ])∥ ∨ ∥S2,1(ℑ[M ])∥ ∨ ∥S2,2(ℑ[M ])∥. Grouping the terms in the expansion for
ℑ[M1,2], ℑ[M2,1] and ℑ[M2,2] and bounding, in norm, by the worst case bound, we get

x ≤ m2ℑ[z] + 2(m+m∞)2τ +m2∥S1,1(ℑ[M ])∥
+ (m+m∞)2 (∥S1,2(ℑ[M ])∥+ ∥S2,1(ℑ[M ])∥+ ∥S2,2(ℑ[M ])∥) .

By flatness of the super-operator and the definition of S ,

∥S1,2(ℑ[M ])∥+ ∥S2,1(ℑ[M ])∥+ ∥S2,2(ℑ[M ])∥ ≤ 3s∥ℑ[M1,1]∥

and ∥S1,1(ℑ[M ])∥ ≤ s∥ℑ[M1,1]∥ + 3sx. Plugging this back into the inequality above and
rearranging,

(1− 3sm2)x ≤ m2ℑ[z] + 2(m+m∞)2τ + 4s(m+m∞)2∥ℑ[M1,1]∥.

By Lemma A.4, m → 0 as |z| → ∞. Hence, letting κ+ ≥ κ+ cκ−1 such that 3sm2 < 1 for all
|z| ≥ κ+,

x ≤
(

m2

1− 3sm2

)
︸ ︷︷ ︸

cz

ℑ[z] +
(
2(m+m∞)2

1− 3sm2

)
︸ ︷︷ ︸

cτ

τ +

(
4s(m+m∞)2

1− 3sm2

)
︸ ︷︷ ︸

cM

∥ℑ[M1,1]∥.

Taking the norm of ℑ[M1,1] using similar bounds,

∥ℑ[M1,1]∥ ≤ m2ℑ[z] + 2m2τ + 6sm2x+ sm2∥ℑ[M1,1]∥.
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Using the inequality for x and grouping terms,

∥ℑ[M1,1]∥ ≤ (6czs+ 1)m2ℑ[z] + (6cτs+ 2)m2τ + (6cMs+ s)m2∥ℑ[M1,1]∥.

Increasing κ+ such that (6cM + 1)sm2 < 1 for every |z| ≥ κ+, we obtain

∥ℑ[M1,1]∥ ≤ 6czs+ 1

1− (6cM + 1)sm2
m2ℑ[z] + 6cτs+ 2

1− (6cM + 1)sm2
m2τ.

We conclude by using the definition of m.

A.2.3. Stieltjes transform representation

Similarly to the classical Nevanlinna representation theorem for scalar function mapping the
upper-half complex plane H to itself, we may represent any solution to the (R)MDE using a
matrix Nevanlinna-Riesz-Herglotz representation. Doing so, we are going to use Lemma A.5
to show that the probability measure in such representation has bounded support when τ = 0.

Lemma A.6 (Nevanlinna-Riesz-Herglotz representation). Assume that M ∈ M such that,
for all z ∈ H, M(z) solves the MDE (19). Then,

M(z) = M∞ +

∫
R

Ω(dλ)

λ− z

for all z ∈ H, where Ω is a real Borel ℓ×ℓ positive semidefinite measure satisfying
∫
R

v∗Ω(dλ)v
1+λ2 <

∞ for all v ∈ Cℓ. Furthermore, Ω1,1 is compactly supported with supp(Ω) ⊆ supp(Ω1,1) and∫
R
Ω(dλ) =

[
In −E[BT ]Q−1

−Q−1E[B] Q−1E[BBT ]Q−1.

]
.

Proof. Since M∞ is real, the matrix-valued function z ∈ H 7→ M(z) −M∞ ∈ A is a matrix-
valued Herglotz function [GT97, Definition 5.2]. In particular, for every v ∈ Cℓ, z ∈ H 7→
q(z) := v∗ (M(z)−M∞) v is a scalar Herglotz function. Recall the notation C = Q−S2,2(M) in
(27). Using (27a) and rearranging M1,1(EA−(EBT −S1,2(M))C−1(EB−S2,1(M))−S1,1(M)−
zIn) = In, we obtain

zM1,1 = M1,1

(
EA− (EBT − S1,2(M))C−1(EB − S2,1(M))− S1,1(M)

)
− In.

Taking the limit as the imaginary part of the spectral parameter goes to infinity using Lemma A.3,
we get that limℑ[z]↑∞ zM1,1 = −In. By (27c), (27d) along with our flatness assumption,
limℑ[z]↑∞ zM1,2 = E[BT ]Q−1 and limℑ[z]↑∞ zM2,1 = Q−1E[B]. Furthermore, by the resolvent
trick, C−1 −M⋆ = C−1S2,2(M)M⋆. Therefore, by (20), (27e),

lim
ℑ[z]↑∞

z(M2,2 −M⋆) = −Q−1S2,2(Iℓ)Q
−1 −Q−1E[B]E[BT ]Q−1 = −Q−1E[BBT ]Q−1.

By Nevanlinna-Riesz-Herglotz representation theorem [GT97, Part (iii) of Theorem 2.2
along with Part (iii) of Theorem 2.3] and Lemma A.3, there exists a Borel measure ω on R
satisfying ∫

R
(1 + λ2)−1ω(dλ) < ∞ and v∗ (M(z)−M∞) v =

∫
R

ω(dλ)

λ− z
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for every z ∈ H. Furthermore, the measure ω is finite with∫
R
ω(dλ) = v∗

[
In −E[BT ]Q−1

−Q−1E[B] Q−1E[BBT ]Q−1.

]
v.

Since this is true for all v ∈ Cℓ, it follows that M(z) = M∞+
∫
R

Ω(dλ)
λ−z for all z ∈ H where Ω is

a real Borel ℓ× ℓ positive semidefinite measure satisfying
∫
R

v∗Ω(dλ)v
1+λ2 < ∞ for all v ∈ Cℓ and

with the given normalization.
By Lemma A.5, there exists κ+ ∈ R>0 such that ∥ℑ[M ]∥ converges uniformly to 0 on as

ℑ[z] approaches 0 on {z ∈ H : ℜ[z] ≥ κ+}. By the Stieltjes inversion formula for Ω [GT97,
Theorem 5.4],

π−1 lim
ϵ↓0

∫ λ2

λ1

ℑ[M(λ+ iϵ)]dλ = Ω((λ1, λ2)) + 2−1Ω ({λ1}) + 2−1Ω ({λ2}) .

Thus, the fact that Ω is compactly supported is a consequence of uniform convergence of
∥ℑ[M ](z)∥ to 0 as ℑ[z] ↓ 0 with ℜ[z] ≥ κ+. We may also observe from the proof of Lemma A.5
that ℑ[M ] = 0 whenever ℑ[M1,1] = 0, implying that supp(Ω) ⊆ supp(Ω1,1).

We can interpret Lemma A.6 as a matrix-valued Stieltjes transform. Hence, we will refer
to it using this terminology. Furthermore, given the normalization of Ω in Lemma A.6, we
say that Ω1,1 is a matrix-valued probability measure in the sense that v∗Ω1,1v is a real Borel
measure satisfying

∫
R v∗Ω1,1(dλ)v = 1 for every v ∈ Cn.

Lemma A.6 also provides an explicit bound on the solution to (19). Indeed, if M ∈ M
solves (19) for every z ∈ H, then

∥M(z)∥ ≤ ∥M∞∥+ dist(z, supp(Ω))−1

∥∥∥∥∫
R
Ω(dλ)

∥∥∥∥ (28)

on H.
When considering the regularized matrix Dyson equation (22) and the solution M (τ)(z), we

encounter a challenge in directly applying the same procedure to obtain a bound on ∥M (τ)(z)∥.
The issue arises from the fact that M∞ has a positive semidefinite imaginary part, which
implies that the function z 7→ M (τ)(z) −M∞ may not be a Herglotz function. One potential
alternative approach is to utilize a multivariate Herglotz representation, as discussed in [LN17].
This representation provides an integral representation for the function (z, iτ) 7→ M (τ)(z)
involving a multivariate measure. However, it should be noted that in such representations,
the measure cannot be finite unless it is trivial. Nonetheless, an analogue of Lemma A.6 holds
for the upper-left n×n block of the solution to the RMDE. The result is obtained via a similar
argument, so we omit the proof.

Lemma A.7. Fix τ ∈ R≥0 and assume that M ∈ M such that, for all z ∈ H, M(z) solves

the RMDE (22). Then, M1,1(z) =
∫
R

Ω1,1(dλ)
λ−z for all z ∈ H, where Ω1,1 is a real Borel n × n

positive semidefinite measure satisfying
∫
R Ω1,1(dλ) = In.

Aside from their inherent value as results, Lemmas A.6 and A.7 hold particular significance
because they enable us to treat the solution of the MDE as the limit of solutions to the RMDE
as τ approaches zero. The key factor in this step is the tightness of the family of measures
induced by the Stieltjes representation of RMDE solutions. We present the following result as
a corollary, as it can be derived almost directly from a combination of the preceding lemmas.
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Corollary A.2. For every τ ∈ R>0, let M
(τ) ∈ M+ such that, for all z ∈ H, M (τ)(z) solves

the RMDE (22). Denote by Ω
(τ)
1,1 the positive semidefinite measure in the Nevanlinna-Riesz-

Herglotz representation of M
(τ)
1,1 for all τ ∈ R>0. Then, for every v ∈ Rn and τ+ ∈ R>0, the

family of measures {v∗Ω(τ)
1,1v : τ ∈ [0, τ+]} is tight.

Proof. Let τ ∈ R>0. By Lemmas A.4 and A.5, there exists κ, c, κ+ ∈ R>0 such that ∥ℑ[M1,1(z)]∥ ≤
c(|z| − κ)−2(τ + ℑ[z]) for every z ∈ H with |z| ≥ κ+. Then,

∥ℑ[M1,1(λ+ iϵ)]∥ ≤ c(
√
λ2 + ϵ2 − κ)−2(τ + ϵ) ≤ c(λ− κ)−2(τ + ϵ)

for every λ > κ+ and ϵ ∈ [0, 1]. Here, c is some constant independent of λ and τ .
Hence, for every λ+ > κ+, by the Stieltjes inversion formula for Ω(τ) [GT97, Theorem 5.4],

Ω
(τ)
1,1 ((λ+,∞)) ⪯ π−1 lim

ϵ↓0

∫ ∞

λ+

ℑ[M (τ)
1,1 (λ+ iϵ)]dλ

⪯ π−1 lim
ϵ↓0

∫ ∞

λ+

∥ℑ[M (τ)
1,1 (λ+ iϵ)]∥dλ

⪯ cπ−1τ

∫ ∞

λ+

(λ− κ)−2dλ.

Therefore, if τ is bounded, we may pick λ+ > κ+ arbitrarily large to ensure that
∫∞
λ+

(λ−κ)−2dλ

is arbitrarily small.

A.2.4. Power series representation

As the set of admissible solutions M consists of analytic matrix-valued functions, any solution
to (19) can be expressed as a power series. By employing the Stieltjes transform representation
provided in Lemma A.6, we can derive a recurrence relation that determines the coefficients
in such an expansion. This recurrence relation will enable us to systematically compute the
coefficients of the power series representation of the solution.

Lemma A.8. Let M ∈ M such that, for all z ∈ H, M(z) solves the MDE (19) and let Ω be
the positive semidefinite measure in the Stieltjes transform representation of M . Then, there
exists λ+ > sup{|λ| ∈ supp(Ω)} such that

M(z) =
∑
j∈N

z−jMj = (EL− zΛ)
−1

∞∑
j=0

( ∞∑
k=0

z−kS(Mk)(EL− zΛ)−1

)j

for every z ∈ H with |z| ≥ λ+. Here, M0 = M∞ and Mj = −
∫
R λj−1Ω(dλ) for every j ∈ N.

Proof. Since supp(Ω) is compact by Lemma A.6, sup{|λ| ∈ supp(Ω)} is finite. Let z ∈ H with
|z| > sup{|λ| ∈ supp(Ω)} and write

M(z) = M∞ +

∫
R

Ω(dλ)

λ− z
= M∞ − z−1

∫
R

Ω(dλ)

1− λ/z
.

We recognize (1−λ/z)−1 as a geometric series and write (1−λ/z)−1 =
∑∞

j=0
λj

zj . By Fubini’s
theorem, ∫

R

Ω(dλ)

1− λ/z
=

∞∑
j=0

z−j

∫
R
λjΩ(dλ)



Latourelle-Vigeant and Paquette/Correlated MDEs and test errors 37

which implies that

M(z) = M∞ −
∞∑
j=0

z−j−1

∫
R
λjΩ(dλ).

On the other hand, by definition, M(z) solves (19), and we may write

M(z) = F(M(z)) = (EL− S(M(z))− zΛ)
−1

.

Using the Schur complement formula, we decompose

(EL− zΛ)−1 =

[
R −RE[BT ]Q−1

−Q−1E[B]R Q−1 +Q−1E[B]RE[BT ]Q−1

]
(29)

with R = R(z;E[BT ]Q−1E[B]− E[A]). Since

∥R∥ = ∥R(z;E[BT ]Q−1E[B]− E[A])∥ ≤ dist(z, σ
(
E[A]− E[BT ]Q−1E[B]

)
)−1,

we obtain (EL − zΛ)−1 |z|→∞−−−−→ M∞. Because M∞ is non-zero only in its lower-right d × d
block, it follows from Lemma A.4 and the flatness of the super-operator that

∥S(M(z))(EL− zΛ)−1∥ |z|→∞−−−−→ 0.

Let λ+ > max{|λ| ∈ supp(Ω)} such that ∥S(M(z))(EL − zΛ)−1∥ < 1 for all z ∈ H with
|z| ≥ λ+. Then, Iℓ − S(M(z))(EL− zΛ)−1 is non-singular with Neumann series

(
Iℓ − S(M(z))(EL− zΛ)−1

)−1
=

∞∑
j=0

(
S(M(z))(EL− zΛ)−1

)j
.

In particular,

(EL− S(M(z))− zΛ)
−1

= (EL− zΛ)−1
∞∑
j=0

(
S(M(z))(EL− zΛ)−1

)j
.

We obtain the result by plugging the series expansion for M(z) and using linearity of the
super-operator.

A.3. Existence and Uniqueness

In this subsection, we finally prove the existence and uniqueness of a solution to the MDE (19).
As we discussed above, we will first prove existence of a solution to the RMDE for every τ > 0
and use a continuity argument to take vanishing τ .

A.3.1. Solution to the RMDE

For every τ > 0, the existence and uniqueness of a unique M (τ) ∈ M+ satisfying (22) for every
z ∈ H follows directly from [HFS07]. At a high-level, the proof of existence and uniqueness
of a solution to (22) in [HFS07] is based on the fact that the mapping F (τ) satisfies the
conditions of the Earle-Hamilton fixed-point theorem [EH70], which states that every strict
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holomorphic function is automatically a contraction with respect to the Carathéodory-Riffen-
Finsler (CRF) pseudometric. We will discuss and use the CRF-pseudometric in order to show
stability in Appendix A.4.2.

For now, we define

Mb := {f : {z ∈ H : |z| ≤ b} 7→ Ab analytic} (30)

with
Ab := {W ∈ Cℓ×ℓ : ℑ[W ] ≻ 0, ∥W∥ < b} ∩ A . (31)

for every b > 0. Indeed, for every b > 0, Mb is a domain in the Banach space of matrix-valued
bounded holomorphic functions on H with the canonical supremum norm. Also, Ab is a domain
in the Banach space of complex symmetric ℓ× ℓ matrices with the operator norm. Using the
work we did above, we can easily show that F (τ) is indeed a strict holomorphic function on
Ab for every τ > 0. The following lemma is a direct adaptation of [HFS07, Proposition 3.2].

Lemma A.9. Let z ∈ H, τ, b ∈ R>0 and define mb := ∥EL∥ + (s + 1)b + τ . Then, for every
W ∈ Ab, ∥F (τ)(W )∥ ≤ τ−1 and ℑ[F (τ)(W )] ⪰ τm−2

b Iℓ ≻ 0.8 In particular, if b > τ−1, then
F (τ) maps Ab strictly into itself.

Proof. LetW ∈ Ab. By Lemma A.2, ∥F (τ)(W )∥ ≤ τ−1 and ℑ[F (τ)(W )] ⪰ τF (τ)(W )[F (τ)(W )]∗.
Let v ∈ Cℓ such that ∥v∥ = 1. By Cauchy-Schwarz inequality,

1 = v∗(F (τ)(W ))−1F (τ)(W )v ≤ ∥F (τ)(W )v∥∥(F (τ)(W ))−∗v∥

which implies that ∥(F (τ)(W ))−1∥−2 ≤ ∥(F (τ)(W ))−∗v∥−2 ≤ ∥F (τ)(W )v∥2. Additionally,

∥(F (τ)(W ))−1∥ = ∥EL− S(W )− zΛ− iτIℓ∥ ≤ mb.

Thus, ℑ[F (τ)(W )] ⪰ τm−2
b Iℓ.

The existence of a unique solution to the RMDE then follows directly from an application
of the Earle-Hamilton fixed-point theorem. Indeed, for every b ∈ R>0, F (τ) has exactly one
fixed point on Mb. Since M+ =

⋃
b∈R>0

Mb, we obtain the following result.

Lemma A.10 ([HFS07, Theorem 2.1]). There exists a unique solution M ∈ M+ such that
M (τ)(z) solves (22) for every τ ∈ R>0 and z ∈ H. Furthermore, for every W0 ∈ M+, the
iterates Wk+1 = F (τ)(Wk) converge in norm to M (τ).

In what follows, we will denote the unique solution of the RMDE with τ > 0 by M (τ).

A.3.2. Solution to the MDE

We are finally ready to prove the existence and the uniqueness of a solution to the MDE (19).

Theorem A.1 (Existence and Uniqueness). There exists a unique analytic matrix-valued
function M ∈ M such that M(z) solves the MDE (19) for every z ∈ H.

For clarity, we will separate the proof into two distinct sub-proofs: proof of existence and
proof of uniqueness. Together, the following two proofs prove Theorem A.1.

8The inequality ℑ[F (τ)(W )] ⪰ τm−2
b Iℓ is strict whenever s ̸= 0.
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Proof of existence in Theorem A.1. For every k ∈ N, let M (k−1) be the unique solution to the
RMDE and write

M
(k−1)
1,1 (z) =

∫
R

Ω
(k−1)
1,1 (dλ)

λ− z

the Stieltjes transform representation guaranteed by Lemma A.7. Additionally, let {vj : j ∈
N} ⊆ Cn be a countable dense subset of the ball of n-dimensional complex unit vectors.

By Corollary A.2, the family of measures {vT1 Ω
(k−1)
1,1 v1 : k ∈ N} is tight. Consequently, by

Prokhorov’s theorem, there exists a probability measure ω1 and a subsequence {τ1,k : k ∈
N} ⊆ {k−1 : k ∈ N} such that v∗1Ω

(τ1,k)
1,1 v1 converges weakly to ω1 as k approaches infinity.

We now proceed inductively. Assume that there exists m ∈ N and collection of compactly

supported measures {ωj : 1 ≤ j ≤ m} such that v∗jΩ
(τm,k)
1,1 vj converges weakly to ωj for all

1 ≤ j ≤ m as k approaches infinity. By Corollary A.2 and Prokhorov’s theorem, there exists
a probability measure ωm+1 and a subsequence {τm+1,k : k ∈ N} ⊆ {τm,k : k ∈ N} such that

v∗m+1Ω
(τm+1,k)
1,1 vm+1 converges weakly to ωm+1 as k approaches infinity. Also, by construction

of the subsequence, v∗jΩ
(τm+1,k)
1,1 vj converges weakly to ωj for all 1 ≤ j ≤ m+1 as k approaches

infinity.
Let τk = τk,k for all k ∈ N. By construction, v∗jΩ

(τk)vj converges weakly to a probability

measure ωj for every j ∈ N as k → ∞. Furthermore, by Lemma A.2, {M (τk)
1,1 : k ∈ N} is a

locally uniformly bounded sequence of analytic functions. Hence, Montel’s theorem guarantees
the existence of a subsequence, which we will assume WLOG to be {τk : k ∈ N} up to

renaming, such that M
(τk)
1,1 converges to an analytic function M1,1.

By the proof of Corollary A.2, there exists κ+ ∈ R>0 and a constant c ∈ R>0 such that∫ ∞

λ+

ωj(dλ) = lim
k→∞

∫ ∞

λ+

v∗jΩ
(τk)
1,1 (dλ)vj ≤ c lim

k→∞
τk

∫ ∞

λ+

(λ− κ)−2dλ = 0

for every λ+ ≥ κ+ and j ∈ N. By Lemma A.7,

v∗jℑ[M1,1]vj = lim
k→∞

v∗jℑ[M
(τk)
1,1 ]vj = ℑ[z]

∫
R

ωj(dλ)

|λ− z|2
.

Since ωj is a probability measure,∫
R

ωj(dλ)

|λ− z|2
=

∫
[−κ+,κ+]

ωj(dλ)

|λ− z|2
≥
(

max
λ∈[−κ+,κ+]

|λ− z|
)−2

which implies that v∗jℑ[M1,1]vj ≥ ℑ[z]
(
maxλ∈[−κ+,κ+] |λ− z|

)−2
for every j ∈ N.

Fix z ∈ H, ϵ = 3−1(ℑ[z])2
(
maxλ∈[−κ+,κ+] |λ− z|

)−2 ∈ R>0. Let v ∈ Cn be any unit vector
and let j ∈ N such that ∥v − vj∥ ≤ ϵ. Then,

u∗ℑ[M1,1]u = (v − v + u)∗ℑ[M1,1](v − v + u) ≥ v∗ℑ[M1,1]v − 2∥u− v∥∥M1,1∥∥v∥ ≥ ϵ

3ℑ[z]
> 0.

In particular, ℑ[M1,1(z)] ≻ 0 for all z ∈ H.
Define M1,2,M2,1 and M2,2 as functions of M1,1 using (27c),(27d),(27e) respectively and

let M be the block matrix with i, j block given by Mi,j for all (i, j) ∈ {1, 2}2. It follows from
Lemma A.1, that Q− S2,2(M) is non-singular and that M is well-defined. By construction, it
is clear that M ∈ M and that M(z) solves (19) for all z ∈ H.
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As mentioned earlier, removing S̃ from the super-operator has the advantage that each
block in the block decomposition of the MDE is solely determined by the upper-left n × n
block. This upper-left block exhibits favorable properties, including an a priori norm bound
due to the position of the spectral parameter. By leveraging these properties, we can establish
the existence of a solution and subsequently construct the remaining part of the solution.

Proof of uniqueness in Theorem A.1. Uniqueness of the solution follows from analyticity and
the power series representation in Lemma A.8. Let λ+ ∈ R>0 such that

M(z) =
∑
j∈N

z−jMj = (EL− zΛ)
−1

∞∑
j=0

( ∞∑
k=0

z−kS(Mk)(EL− zΛ)−1

)j

for every z ∈ H with |z| ≥ λ+.
Since resolvent of Hermitian matrices are analytic when the spectral parameter is away

from the support, is follows from the decomposition in (29) that (EL − zΛ)−1 is analytic.
Write (EL− zΛ)−1 =

∑∞
j=0 z

−jLj for some complex matrices {Lj : j ∈ N} ⊆ Cℓ×ℓ. Plugging

this in the power series expansion of M and gathering coefficients of z−1, we get that M1 =
L1+L0S(M0)L1+L0S(M1)L0. We computed above that (EL−zΛ)−1 → M∞ as |z| → ∞ and
similarly for M(z). In other words, L0 = M0 = M∞. Looking at the structure of the super-
operator, S2,2(M0) = 0, which gives us L0S(M0) = 0. In particular, M1 = L1 + L0S(M0)L1

is expressible solely in terms of L0 and L1.
Let k ∈ N. Gathering the coefficients for z−(k+1) in the power series expansion, we get that

Mk+1 = f(M0,M1, . . . ,Mk) + L0S(Mk+1)L0

for some function analytic f . By induction hypothesis, we assume that {Mj : j ∈ {0, 1, . . . , k}}
are fully determined by {Lj : j ∈ N0}. Furthermore, since L0 = M∞ is 0 everywhere outside
its lower d× d block,

L0S(Mk+1)L0 =

[
0n×n 0n×d

0d×n M⋆S2,2(M)M⋆.

]
Therefore, extracting the upper-left n×n block, we obtain that the upper-left n×n block along
with both off-diagonal blocks ofMk+1 are determined by the coefficient matrices {Lj : j ∈ N0}.
Since S2,2(M) does not depend on the lower-right block of M , we may also determine the
lower-right block of Mk+1.

Inducting, we get that any two solution to (19), M and M̃ must be equal for all z ∈ H with
|z| > λ+ for some λ+ ∈ R>0. By analytic continuation, it follows that M(z) = M̃(z) for all
z ∈ H.

For the rest of this document, we will denote the unique solution of the MDE with by M .
Remarkably, during the proof of the uniqueness of the solution to the linearized matrix

Dyson equation, we come across the stability operator evaluated at z = ∞. The significance
lies in the fact that our demonstration is equivalent to establishing the invertibility of the
stability operator at infinity. This outcome effectively allows us to recursively determine the
terms within the power series expansion of M .

In contrast to the guarantee offered by Lemma A.10, it is also important to consider that
Theorem A.1 does not ensure pointwise convergence for the fixed-point iteration fk+1 = F(fk)
with an initial condition f0 ∈ M to the solution of the matrix Dyson equation. This highlights
one of the primary reason we rely on the solution to the regularized MDE as a means to
establish stability, effectively treating it as a surrogate for the solution to the MDE.
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A.4. Stability

Continuing our analysis, we introduce the following assumption, akin to what was presented
in the main text.

Assumption 4. For every z ∈ H, there exists a function f and subsequence {τk} ⊆ R>0 such
that τk → 0, f(τk) → 0 and ∥M (τk)(z)−M(z)∥ ≤ f(τk) + oℓ(1) for all k ∈ N and every ℓ ∈ N
large enough.

It is noteworthy that Assumption 4 is fulfilled within the frameworks based on the matrix
Dyson equation for linearization as detailed in [EKN20, And13, FKN23]. This satisfaction
is explicitly indicated by [EKN20, Equation 4.11], [And13, Estimates 6.3.3.], and [FKN23,
Equation A.25]. In general, the validity of Assumption 4 in these cases stems from the ability
to construct a dimension-independent representation of the solution to the (R)MDE using
tools from free probability. As asserted by [HT05, Lemma 5.4], such a representation exists

whenever L takes the form L = A0 ⊗ In +
∑k

j=1 Ai ⊗ Xj , where {Aj}kj=0 forms a collection

of complex d× d self-adjoint matrices, and {Xj}kj=1 forms a collection of independent random

matrices with {(Xj)a,a}na=1 ∪ {(
√
2ℜXj)a,b}a<b ∪ {(

√
2ℑXj)a,b}a<b being a collection of n2

i.i.d. centered Gaussian random variables for every j ∈ {1, 2, . . . , k}.
Furthermore, Assumption 4 is related to the stability operator. Following the notation

in [AEKN19], the stability operator is defined as L : W ∈ Cℓ×ℓ 7→ W − MS(W )M . The
concept of the stability operator is inherently connected to the analysis of the matrix Dyson
equation [AEKN19, Erd19, AEK19b, FKN23]. The term stability operator is aptly chosen be-
cause, when it is both invertible and its inverse is bounded, it provides a means to establish the
stability of the matrix Dyson equation through techniques like an implicit function theorem
such as the one in [AEK19b, Lemma 4.10] as demonstrated in the work of [Erd19, EKN20]. The
stability operator organically appears in the uniqueness argument, where its invertibility at
infinity allows us to uniquely and recursively determine the power series expansion of the solu-
tion. The connection between the stability operator and Assumption 4 becomes apparent when
we consider the derivative of M (τ)(z) with respect to iτ , which yields L(∂iτM(z)) = (M(z))2.
Because M(z) is bounded in operator norm, we can conclude that Assumption 4 is implied by
the requirement of having an invertible stability operator with a bounded inverse.

We proceed to prove the asymptotic stability of the MDE. To this end, let F (z) = E(L −
zΛ)−1 ∈ M be the expected pseudo-resolvent. It is inconvenient to work directly with the
expected pseudo-resolvent, and we will systematically prefer working with a regularized version
of the same object. For each τ ∈ R>0, we consider the expected regularized pseudo-resolvent
F (τ)(z) = E(L− zΛ− iτIℓ)

−1 ∈ M+ which satisfies

(EL− S(F (τ)(z))− zΛ− iτIℓ)F
(τ)(z) = Iℓ +D(τ), (32)

where D(τ) is a regularized perturbation term explicitly given by

D(τ) = E
[(
EL− L− S(E(L− zΛ− iτIℓ)

−1)
)
(L− zΛ− iτIℓ)

−1
]
. (33)

Essentially, we consider F (τ) as a function that almost satisfies the MDE, up to an additive
perturbation term D(τ). By stability, we mean the property of the MDE that implies F (z) is
close — pointwise in spectral norm — to the solution M(z) of (19) for every z ∈ H whenever
the perturbation D(τ) and the regularization parameter τ are small.

Since our primary objective is to investigate the behavior in the high-dimensional limit, it
is essential for the super-operator S , among other objects, to remain bounded as the problem
dimension increases. We make the following assumption.
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Assumption 5. Suppose that there exists s ∈ R>0 such that ∥S(W )∥ ≤ s∥W∥ for every
W ∈ Cℓ×ℓ and lim supℓ→∞ s < ∞. Furthermore, assume that lim supℓ→∞ ∥EL∥ < ∞ and
lim supℓ→∞ E∥(L− zΛ)−1∥2 < ∞.

As denoted in (32), let us consider the expected regularized pseudo-resolvent F (τ) = E(L−
zΛ−iτIℓ)

−1 as a function that approximately solve (22) up to an additive perturbation matrix
D(τ) explicitly provided by (33). For a fixed z ∈ H, let Eτ = F (τ)(F (τ))D(τ) for every τ ∈ R≥0,
defining the error matrix, and ϵτ = ∥Eτ∥ representing the magnitude of the error at τ . In the
subsequent discussions, it will be convenient to fixed z ∈ H and write F (τ) ≡ F (τ)(z) as well
as M (τ) ≡ M (τ)(z).

We want to compare the pseudo-resolvent with the solution of the MDE using the following
pairwise comparisons:

(L− zΛ)−1 −M(z) = (L− zΛ)−1 − E(L− zΛ)−1 (34a)

+ E(L− zΛ)−1 − E(L− zΛ− iτIℓ)
−1 (34b)

+ E(L− zΛ− iτIℓ)
−1 −M (τ)(z) (34c)

+M (τ)(z)−M(z). (34d)

The first comparison in (34a) corresponds to the concentration step of our argument. Al-
though this difference may not generally be controlled in norm, we have the capability to
demonstrate concentration, either in probability or almost surely, of generalized trace entries
of the regularized pseudo-resolvent around its mean. By separating the concentration step
from the rest of the method, we adopt a strategy that enables us to primarily work with de-
terministic objects throughout the analysis. This approach offers significant simplifications in
various steps and allows us to work with norm bounds.

The second comparison in (34a) assesses the proximity of the pseudo-resolvent to its regu-
larized counterpart, measured in norm. We show in Lemma A.11 that this difference can be
easily controlled by the parameter τ and the norm of the pseudo-resolvent (L− zΛ)−1. Conse-
quently, if the norm of (L−zΛ)−1 is bounded, we can employ the regularized pseudo-resolvent
with small τ ∈ R>0 as a valid approximation for the pseudo-resolvent.

The third comparison is directly linked with the stability properties of the RMDE. We will
use the Carathéodory-Riffen-Finsler pseudometric to control the distance between F (τ) and
M (τ) in term of ϵτ , and eventually the norm of the perturbation matrix, as the dimension of
the problem increases. The convergence of the expected regularized pseudo-resolvent to the
solution of the regularized matrix Dyson equation depends intricately on the rate at which τ
approaches zero while ℓ increases to infinity.

The fourth and final comparison, (34d), simply states that the solution to (22) should be a
good approximation for (19) for small τ . For a fixed τ ∈ R>0, it follows from the construction
of M that ∥M (τ)(z) − M(z)∥ → 0 as τ → 0. However, because we are taking ℓ → ∞ and
τ → 0, we rely on Assumption 4 to control this term.

In this section, we will show that (34b) becomes negligible as τ vanishes. Then, we will
take care of (34c) by arguing that the RMDE is asymptotically stable for every τ ∈ R>0. Our
argument will imply that (19) is asymptotically stable.

A.4.1. Regularization

In this subsection, we analyze the discrepancy between the expected pseudo-resolvent and the
expected regularized pseudo-resolvent in terms of the regularization parameter τ . We aim to



Latourelle-Vigeant and Paquette/Correlated MDEs and test errors 43

establish bounds that quantify how close these two pseudo-resolvents are as τ varies. We have
the following result.

Lemma A.11. For every τ ∈ R≥0 and z ∈ H, ∥(L − zΛ − iτIℓ)
−1 − (L − zΛ)−1∥ ≤ τ∥(L −

zΛ)−1∥2.

Proof. By the resolvent trick, ∥(L− zΛ− iτIℓ)
−1 − (L− zΛ)−1∥ ≤ τ∥(L− zΛ− iτIℓ)

−1∥∥(L−
zΛ)−1∥. Let v ∈ Cℓ be arbitrary and decompose L − zΛ − iτIℓ = X + iY − iτIℓ with X =
ℜ[L− zΛ] and Y = ℑ[L− zΛ]. Then, using the fact that (L− zΛ− iτIℓ)

∗ = X − iY + iτIℓ,

v∗ (X + iY − iτIℓ)
∗
(X + iY − iτIℓ) v ≥ v∗(X + iY )∗(X + iY )v + τ2v∗v − 2τv∗Y v

≥ v∗(X + iY )∗(X + iY )v.

Because taking the inverse reverses the Loewner partial ordering, it follows that ∥(L − zΛ −
iτIℓ)

−1∥ ≤ ∥(L− zΛ)−1∥.

By Lemma A.11 and Jensen’s inequality, the expected pseudo-resolvent E(L−zΛ)−1 is well-
approximated by its regularized version for small τ as long as E∥(L− zΛ)−1∥2 is bounded.

A.4.2. Bounds in the Carathéodory-Riffen-Finsler pseudometric

Given a domain D in a complex Banach space (X , ∥·∥), the infinitesimal Carathéodory-Riffen-
Finsler (CRF)-pseudometric [Har03, Har79] for D is defined as

α : (x, v) ∈ D × X 7→ sup{|Dg(x)v| : g ∈ Hol(D ,∆)} ∈ R

where ∆ is the complex open unit disk and Dg(x) is the Fréchet derivative of g at x. We set

L (γ) =

∫ 1

0

α(γ(y), γ′(t))dt

for admissible curve γ in the set Γ of all curves in D with piecewise continuous derivative.
The infinitesimal pseudometric is a seminorm at each point in D , and we view L (γ) as the
length of the curve γ measured with respect to α. The CRF-pseudometric [Har03, Har79] of
D is defined as

ρ : (x, y) ∈ D2 7→ inf{L (γ) : γ ∈ Γ, γ(0) = x, γ(1) = y} ∈ R≥0.

For every b ∈ R>0, we will consider the domain Ab defined in (31) in the Banach space of ℓ× ℓ
complex matrices equipped with the operator norm.

As we already stated multiple times, the map F (τ) is a strict contraction with respect to
the CRF-pseudometric.

Lemma A.12. Fix z ∈ H and τ ∈ R>0. For every b ∈ R>0, let mb = ∥EL∥+ sb+ |z|+ τ + 1
and ξ = (m2

bτ
−2−1)−1. Suppose that τ−1(1+2ξ) < b and let ρ denotes the CRF-pseudometric

on Ab. Then, for every X,Y ∈ Ab, ρ(F (τ)(X),F (τ)(Y )) ≤ (1 + ξ)−1ρ (X,Y ).

Proof. Define G : W ∈ Ab 7→ F (τ)(W ) + ξ(F (τ)(W ) − F (τ)(X)). By Lemmas A.2 and A.9,
we have ℑ[F (τ)(W )] ≻ τm−2

b and ∥F (τ)(W )∥ ≤ τ−1 for every W ∈ Ab. Hence, ℑ[G(W )] ≻
(1+ξ)τm−2

b −ξτ−1 ⪰ 0 and ∥G(W )∥ ≤ τ−1+2τ−1ξ < b. Therefore, G is a strictly holomorphic
function in the sense that it is an holomorphic function mapping Ab strictly into itself. The
result follows from the proof of Earle-Hamilton fixed-point theorem [Har79, Theorem 4].
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It is important to note that Lemma A.12 does not imply that the function F (τ) is a con-
traction with respect to the operator norm. Indeed, with respect to the operator norm, the
map F (τ) is merely an analytic function mapping a domain strictly into itself.

Our main tool to extrapolate results about norms is the following Schwarz-Pick inequality,
which we state here for completeness.

Proposition A.1 ([Har79, Proposition 3]). Let D1 and D2 be domains in complex Banach
spaces and let ρ1 and ρ2 be the associated CRF-pseudometric. If h : D1 7→ D2 is holomorphic,
then ρ2(h(x), h(y)) ≤ ρ1(x, y) for all x, y ∈ D1.

In fact, it can be showed that the inequality in Proposition A.1 may be replaced by an
equality when the function h is biholomorphic, making the CRF-pseudometric biholomorphi-
cally invariant. Proposition A.1 states that the CRF-pseudometric is a contraction in the sense
that it is decreasing under holomorphic mappings.

Let ρ∆ denote the CRF-pseudometric on the complex open unit disk ∆. Proposition A.1 is
particularly useful because ρ∆, which is called the Poincaré metric, admits the closed form

ρ∆(z1, z2) = arctanh

∣∣∣∣ z1 − z2
1− z̄1z2

∣∣∣∣ . (35)

See [Har79, Example 2] for a derivation of (35). Using Proposition A.1 and equation (35), we
may show that the CRF-pseudometric dominates the operator norm.

Lemma A.13. Fix z ∈ H and τ ∈ R>0. For every b ∈ R>0 with b > τ−1 and ρ the CRF-
pseudometric on Ab, ∥M (τ) − F (τ)∥ ≤ (b+ τ−1) tanh(ρ(M (τ), F (τ))).

Proof. Let mb be defined as in the proof of Lemma A.12 and recall that ∥M (τ)∥ ≤ τ−1 as well
as ℑ[M (τ)] ≻ τm−2

b . Similarly, we have ∥(L− zΛ− iτIℓ)
−1∥ ≤ τ−1 and ℑ[(L− zΛ− iτIℓ)

−1] ⪰
τ(∥L∥+|z|+τ)−2. Hence, by monotonicity of the expectation and Jensen’s inequality, ∥F (τ)∥ ≤
τ−1 and ℑ[F (τ)] ⪰ τ(E∥L∥+ |z|+ τ)−2 ≻ 0. In particular, M (τ), F (τ) ∈ Ab.

Let U ∈ Cℓ×ℓ with ∥U∥∗ ≤ 1 and define the holomorphic function f : W ∈ Ab 7→ tr(U(W −
M (τ)))(b+ τ−1)−1 ∈ ∆. By Proposition A.1 and equation (35),

arctanh

∣∣∣∣ tr(U(W −M (τ)))

(b+ τ−1)

∣∣∣∣ = ρ∆

(
f(M (τ)), f(W )

)
≤ ρ

(
M (τ),W

)
for every W ∈ Ab. Plugging W = F (τ) and rearranging,

| tr(U(F (τ) −M (τ)))| ≤ (b+ τ−1) tanh
(
ρ(M (τ), F (τ))

)
.

We obtain the result by taking the supremum over U and using duality.

In Lemma A.10, we established that the solution to the regularized matrix Dyson equation
can be obtained using a fixed-point iteration scheme. Using this idea, we will recursively define
a sequence of matrices and use the contraction property in Lemma A.12 to control the distance
between M (τ) and F (τ) in the CRF-pseudometric. Since the CRF-pseudometric dominates the
operator norm, we will obtain convergence in norm. The only remaining ingredients are control
of ρ(M (τ), F (τ)) and ρ(F (τ)(F (τ)), F (τ)). While the norm ∥M (τ)−M0∥ may be easily bounded
uniformly in ℓ, transferring this bound to the CRF-pseudometric poses additional difficulties
which we address in the following lemma.
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Lemma A.14. Under the settings of Lemma A.12, further assume that b > τ−1 + τm−2
b and

ϵτ < τm−2
b . Then, ρ(M (τ), F (τ)) < 4τ−1(τm−2

b − ϵτ )
−1.

Proof. By (32), F (τ) = F (τ)(F (τ)) + Eτ which implies that ℑ[F (τ)] ⪰ ℑ[F (τ)(F (τ))] − ϵτ ≻
τm−2

b − ϵτ .
Let Wt := tM (τ)+(1−t)F (τ) be a linear interpolation of M (τ) and F (τ) for t ∈ [0, 1].9 Then,

∥Wt∥ ≤ τ−1 < b and ℑ[Wt] ≻ τm−2
b −ϵτ for every t ∈ [0, 1]. It is clear that Bτm−2

b −ϵτ
(Wt) ⊆ Ab,

where Br(X) denotes the open ball in Cℓ×ℓ of radius r centered around X. Define a sequence
{tj}j∈N0 ⊆ [0, 1] such that t0 = 0 and tj+1 =

(
tj + 4−1τ(τm−2

b − ϵτ )
)
∧ 1 for every j ∈ N0.

Indeed,

∥Wtj+1 −Wtj∥ = ∥(tj+1 − tj)M
(τ) + (tj − tj+1)F

(τ)∥
≤ 2τ−1(tj+1 − tj) ≤ 2−1(τm−2

b − ϵτ ) < τm−2
b − ϵτ

for every j ∈ N0. To summarize, we constructed a sequence of complex matrices {Wtj}j∈N0
⊆

Ab interpolating M (τ) and F (τ) such that Wtj+1
∈ Bτm−2

b −ϵτ
(Wtj ) ⊆ Ab. The sequence

{tj}j∈N0
attains 1 in at most η := 4τ−1(τm−2

b − ϵτ )
−1 steps.

Fix j ∈ N such that tj ̸= 1 and define the holomorphic function

g : w ∈ ∆ 7→ Wtj +
w(τm−2

b − ϵτ )

∥Wtj+1
−Wtj∥

(Wtj+1
−Wtj ) ∈ Ab

as in [Har79, proof of Theorem 5]. By Proposition A.1 and equation (35),

ρ
(
Wtj ,Wtj+1

)
= ρ

(
g(0), g

(∥Wtj+1
−Wtj∥

τm−2
b − ϵτ

))
≤ ρ∆

(
0,

∥Wtj+1
−Wtj∥

τm−2
b − ϵτ

)
≤ arctanh(2−1) < 1.

Finally, applying the triangle inequality, ρ(M (τ),M0) ≤
∑η−1

j=0 ρ(Wtj ,Wtj+1
) < η. This con-

cludes the proof.

Using a similar argument, we can bound ρ(F (τ)(F (τ)), F (τ)) using ϵτ .

Lemma A.15. Under the settings of Lemma A.14, ρ(F (τ)(F (τ)), F (τ)) ≤ arctanh(ϵτm
2
b/τ).

Proof. Using (32), F (τ)(F (τ)) − F (τ) = −Eτ which implies that ∥F (τ)(F (τ)) − F (τ)∥ ≤ ϵτ .
Furthermore, F (τ) ∈ Ab by the proof of Lemma A.13. Define the holomorphic function

g : w ∈ ∆ 7→ F (τ)(F (τ)) +
wτm−2

b

∥F (τ)(F (τ))− F (τ)∥
(F (τ) − F (τ)(F (τ))) ∈ Ab.

Assuming that ϵτ < τm−2
b ,

ρ
(
F (τ)(F (τ)), F (τ)

)
= ρ

(
g(0), g

(
∥F (τ)(F (τ))− F (τ)∥

τm−2
b

))
≤ ρ∆

(
0,

∥F (τ)(F (τ))− F (τ)∥
τm−2

b

)
≤ arctanh

(
∥F (τ)(F (τ))− F (τ)∥

τm−2
b

)
,

where we have used the Schwarz-Pick inequality stated Proposition A.1 as well as (35).
9Since the CRF-pseudometric on Ab can be seen as a generalization of the hyperbolic metric, the specific

choice of linear interpolation in our analysis is not expected to be optimal. Although alternative interpolation
schemes could potentially yield more optimal results, the focus of our analysis lies elsewhere, and the linear
interpolation is not a limiting factor in terms of the convergence rate we obtain.
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A.4.3. Main stability result

Combining Lemmas A.12 to A.15, we obtain the following asymptotic stability result.

Theorem A.2 (Theorem 3.2 from the main text). Suppose that ∥D(τ)∥ ℓ→∞−−−→ 0 for every

τ ∈ R>0. Then, under Assumptions 4 and 5, ∥M(z)−E(L− zΛ)−1∥ ℓ→∞−−−→ 0 for every z ∈ H.

Proof. Fix z ∈ H, τ ∈ R>0. Let b = τ−1+2τ ,mb = ∥EL∥+sb+|z|+τ+1 and ξ = (m2
bτ

−2−1)−1.
In order to apply Lemmas A.12 and A.14, we first have to show that b satisfies τ−1(1+2ξ) < b
and b > τ−1 + τm−2

b . To this end, notice that m2
bτ

−2 > τ−2 + 1. Therefore, ξ < τ2 and
τ−1(1 + 2ξ) < b. Furthermore, m−2

b < 1 so τ−1 + τm−2
b < b.

By definition of the error matrix, we have ϵτ ≤ τ−1∥D(τ)∥. Assume that ℓ is large enough
such that ϵτ < τm−2

b and let ρ denote the CRF-pseudometric on Ab. By Lemma A.13,

∥M (τ) − F (τ)∥ ≤ (b+ τ−1) tanh
(
ρ(M (τ), F (τ))

)
.

Recursively define a sequence {Mk : k ∈ N0} ⊆ A+ such that M0 = F (τ)(z) and Mk+1 =
F (τ)(Mk)(z) for every k ∈ N0. Hence, by Lemmas A.12, A.14 and A.15,

ρ(M (τ), F (τ)) ≤ ρ(M (τ),Mk) +

k∑
j=1

ρ(Mj ,Mj−1)

≤ (1 + ξ)−kρ(M (τ), F (τ)) + ρ
(
F (τ)(F (τ)), F (τ)

) ∞∑
j=0

(1 + ξ)−j

≤ 4

τ(τm−2
b − ϵτ )(1 + ξ)k

+
arctanh(ϵτ/(τm

−2
b ))

1− (1 + ξ)−1
.

Since the above inequalities hold for every k ∈ N, we may take the limit as k → ∞ to obtain

ρ(M (τ), F (τ)) ≤ (1 + ξ)

ξ
arctanh

(
m2

b∥D(τ)∥
τ2

)
.

As τ → 0 and ℓ → ∞, assuming that ∥EL∥ and s remains bounded, we have b ≍ mb ≍ τ−1

and ξ ≍ τ2. Thus, asymptotically, we have

∥M (τ) − F (τ)∥ ≲ τ−1 tanh
(
τ−2arctanh

(
τ−4∥D(τ)∥

))
.

For instance, letting τ = ∥D(τ)∥1/8, we get ∥M (τ)−F (τ)∥ ≲ ∥D(τ)∥1/8 for every ℓ large enough.
Combining this with Assumptions 4 and 5 and lemma A.11, there exists a function f and

a subsequence {τk} ⊆ R>0 such that τk → 0 and f(τk) → 0 and

∥M(z)− F (z)∥ ≤ ∥M(z)−M (τ)(z)∥+ ∥M (τk)(z)− F (τ)(z)∥+ ∥F (τ)(z)− F (z)∥

≲ f(τk) + τ−1
k tanh

(
τ−2
k arctanh(τ−4

k ∥D(τ)∥)
)
+ τk + oℓ(1)

for every k ∈ N and ℓ ∈ N large enough.

The proof of Theorem A.2 highlights a contrast between τ and ℓ in terms of their effect on the
convergence behavior. Furthermore, it’s important to highlight that the proof of Theorem A.2
essentially simplifies the stability analysis of the MDE to demonstrating that the difference
between the expected regularized pseudo-resolvent before and after a single application of the
RMDE map is small in the natural CRF-pseudometric.
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A.5. Resolvent Approximation

Now that we have existence of a unique solution M to (19) as well as an asymptotic stability
property, we want to show that M(z) serves as a favorable asymptotic approximation for the
pseudo-resolvent (L − zΛ)−1. In view of Theorem A.2, the focus shifts to proving that the
perturbation matrix vanishes in norm as the problem dimension grows for every regularization
parameter. There are various methods to establish this, depending on the assumptions about
the linearization L. To apply our framework and study random features ridge regression, we
naturally choose a route based on Gaussian concentration inequalities. This choice confines our
theoretical considerations to linearizations characterized by Gaussian-concentrated entries.

Assumption 6. Suppose that γ ∈ N, g ∼ N (0, Iγ) and that there exists a map C : Rγ 7→ Rℓ×ℓ

such that L ≡ L(g) = C(g) + EL. Furthermore, assume that C is symmetric in the sense that
C(x) = (C(x))T for every x ∈ Rγ .

With reference to (34), our remaining tasks are to demonstrate the vanishing of the pertur-
bation matrix in ℓ and establish the concentration of functionals of (L − zλ)−1 around their
mean. The next two subsections are dedicated to these objectives.

A.5.1. Perturbation

We focus on the expected pseudo-resolvent denoted as F ≡ F (z) := E(L − zΛ)−1, and more
generally, the regularized expected pseudo-resolvent denoted as F (τ) ≡ F (τ)(z) := E(L− zΛ−
iτIℓ)

−1 for every τ ∈ R>0. In view of our stability argument, we only have to show that the
perturbation matrix defined in (33) is vanishing.

Several methods can be employed to demonstrate that the perturbation matrix is vanishing,
each tailored to specific assumptions about the linearization. Based on our motivating example,
we leverage a Gaussian concentration argument inspired by works such as [LLC18, Cho22]. To
utilize this Gaussian concentration argument, we operate under Assumption 6. This allows us
to derive straightforward conditions on the function C, ensuring D(τ) → 0 as ℓ → ∞ for all
τ ∈ R>0. Additionally, we employ a Gaussian concentration inequality to show that Lipschitz
functionals of the regularized pseudo-resolvent (L − zΛ − iτIℓ)

−1 concentrate around their
mean. We present a Gaussian concentration inequality for Lipschitz functions and direct the
reader to [Led01] and [Tao12] for further details. Alternatively, we can utilize the Nash-Poincaré
inequality [Pas05, Proposition 2.4], a consequence of Stein’s lemma, to establish concentration.

Proposition A.2 (Gaussian concentration inequality for Lipschitz functions [Tao12, Theorem
2.1.12] and [Led01, Proposition 1.10]). Suppose that x ∼ N (0, Iγ) and let f : Rγ 7→ R be a
λ-Lipschitz function. Then, for every t ∈ R,

P (|f(x)− E[f(x)]| ≥ t) ≤ c1e
− c2t2

λ2

for some absolute constants c1, c2 ∈ R>0.

Under Assumption 6, we aim to decompose the perturbation matrix D(τ) into terms that
are amenable to analysis. To achieve this, define

∆(L, τ ; z) = E[(L− EL)(L− zΛ− iτIℓ)
−1]

+ E[(L̃− EL)(L− zΛ− iτIℓ)
−1(L̃− EL)(L− zΛ− iτIℓ)

−1] (36)
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where L̃ is an i.i.d. copy of L,

S̃ : M ∈ Cℓ×ℓ 7→ E [(L− EL)M(L− EL)]− S(M) ∈ Cℓ×ℓ, 10 (37)

and consider the decomposition

D(τ) = E
[
S((L− zΛ− iτIℓ)

−1)(L− zΛ− iτIℓ)
−1
]
− S(F (τ))F (τ) (38a)

+ E
[
S̃((L− zΛ− iτIℓ)

−1)(L− zΛ− iτIℓ)
−1
]

(38b)

−∆(L, τ). (38c)

The first perturbation term in (38a) arises from the use of the expected pseudo-resolvent in
Theorem A.2. To ensure that this perturbation term is asymptotically small, we require the
super-operator S to be averaging. This implies that S((L−zΛ−iτIℓ)

−1) should exhibit a ”law
of large numbers” behavior and converge to a deterministic limit. While working directly with
the pseudo-resolvent would eliminate this specific perturbation term from the expectation of
D(τ), such an approach would have its disadvantages. Utilizing the expected pseudo-resolvent,
on the other hand, allows us to work with deterministic objects and leverage norm bounds. We
derive a condition for S((L− zΛ− iτIℓ)

−1) to concentrate around its mean based on Gaussian
concentration.

The second perturbation term, as expressed in (38b), arises from our specific definition of the
super-operator and would not be present if we defined the super-operator as E[(L−EL)M(L−
EL)]. However, our chosen definition of the super-operator, coupled with the assumption Q =
EQ, ensures that the MDE can be determined by the upper-left n× n block. This distinction
allows us to establish the existence of a solution to (19). Consequently, we view S̃ as a correction
term that be vanishing in ℓ.

Finally, (38c) posits that the matrix L should approximate a Gaussian distribution in the
sense that it should asymptotically satisfy a matrix Stein lemma with a vanishing error. The
quantity ∥∆(L, τ)∥ serves informally as a metric characterizing the distance between L and a
matrix with Gaussian entries. Notably, the subsequent result demonstrate that ∆(L, τ) = 0
holds whenever L has Gaussian entries.

In order to maintain a certain level of abstraction, we will directly assume that the mapping
g 7→ S(L(g) − zΛ − iτIℓ)

−1 is λ-Lipschitz with respect to the operator norm and employ an
ϵ-net argument to obtain bounds EL̃[∥(L̃ − EL)((L − zΛ − iτIℓ)

−1 − F (τ)(z))(L̃ − EL)∥] for
k ∈ N.

Lemma A.16. Fix z ∈ H and τ ∈ R>0. Assume that the mapping g 7→ S((L−zΛ−iτIℓ)
−1) is

λ-Lipschitz with respect to the operator norm. Then, for every k ∈ N, there exists an absolute
constant c ∈ R>0 such that

E
[
∥S
(
(L− zΛ− iτIℓ)

−1 − F (τ)(z)
)
∥k
]
≤ cℓk/2λk.

Proof. Let u, v ∈ Cℓ be arbitrary unit vectors. By Proposition A.2,

P
(
λ−1

∣∣∣u∗S
(
(L− zΛ− iτIℓ)

−1 − F (τ)(z)
)
v
∣∣∣ ≥ t

)
≤ c1e

−c2t
2

for some absolute constant c1, c2 ∈ R>0. Suppose that ϵ ∈ (0, 8−1) and let N be an ϵ-net for
the unit ball of ℓ-dimensional real vectors. Then, given u ∈ Cℓ, we may find v1, v2 ∈ N such

10We may also remove any term in the upper-left block of E [(L− EL)M(L− EL)] from S and add them

to S̃ without changing any of our arguments.
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that ∥u − v1 − iv2∥ ≤ ∥ℜ[u] − v1∥ + ∥ℑ[u] − v2∥ ≤ 2ϵ. In particular, N + iN := {v1 + iv2 :
v1, v2 ∈ N } forms a 2ϵ-net for the unit sphere of ℓ-dimensional complex unitary vectors.
By [Ver18, Corollary 4.2.13], |N + iN | ≤ (2ϵ−1 + 1)2ℓ.

Let u, v ∈ Cℓ be unitary and let u0, v0 ∈ N +iN such that ∥u−u0∥ ≤ 2ϵ and ∥v−v0∥ ≤ 2ϵ.
Let W ∈ Cℓ×ℓ be any matix. Using the identity u∗Wv = u∗

0Wv0+(u∗−u∗
0)Wv+u∗

0W (v−v0),
we obtain |u∗Wv| ≤ supu0,v0∈N +iN |u∗

0Wv0| + 8ϵ∥W∥. Taking the supremum over unitary
complex vectors u and v, we get that ∥W∥ ≤ (1 − 8ϵ)−1 supu0,v0∈N +iN |u∗

0Wv0|. Therefore,
using a union bound,

P
(
λ−1∥S

(
(L− zΛ− iτIℓ)

−1 − F (τ)(z)
)
∥ ≥ u

)
≤ c1(2ϵ

−1 + 1)4ℓe−c2u
2

for every u ∈ R. Let u = c(2
√
ℓ + t) for some t ∈ R≥0 such that u2 ≥ c2(4ℓ + t2). Choosing

c ∈ R>0 large enough such that c22u
2 ≥ ln(2ϵ−1 + 1)4ℓ+ t2,

c1(2ϵ
−1 + 1)4ℓe−c2u

2

≤ c1(2ϵ
−1 + 1)4ℓe− ln(2ϵ−1+1)4ℓe−t2 = c1e

−t2 .

Let k ∈ N be arbitrary. Then,

E
[
λ−k∥S

(
(L− zΛ− iτIℓ)

−1 − F (τ)(z)
)
∥k
]

=

∫ ∞

0

P
(
λ−k∥S

(
(L− zΛ− iτIℓ)

−1 − F (τ)(z)
)
∥k ≥ u

)
du

On one hand,∫ (2c
√
ℓ)k

0

P
(
λ−k∥S

(
(L− zΛ− iτIℓ)

−1 − F (τ)(z)
)
∥k ≥ u

)
du ≤ (2c

√
ℓ)k.

On the other hand,∫ ∞

(2c
√
ℓ)k

P
(
λ−k∥S

(
(L− zΛ− iτIℓ)

−1 − F (τ)(z)
)
∥k ≥ u

)
du

≤ ckc1k

∫ ∞

0

(2
√
ℓ+ t)k−1e−t2dt

≤ ckc1k

(
(4
√
ℓ)k−1

∫ 2
√
ℓ

0

e−t2dt+

∫ ∞

2
√
ℓ

(2t)k−1e−t2dt

)

Since
∫ 2

√
ℓ

0
e−t2dt ≤

∫∞
0

e−t2dt =
√

π
2 , the first term in on the RHS of the inequality above

grows with ℓ like ℓ(k−1)2. For the second term, simply notice that∫ ∞

2
√
ℓ

(2t)k−1e−t2dt = (2t)k−2

(∫ t

−∞
(2u)e−u2

du

) ∣∣∣∞
2
√
ℓ

− 2(k − 2)

∫ ∞

2
√
ℓ

(2t)k−3

(∫ t

−∞
(2u)e−u2

du

)
dt

where
∫ t

−∞(2u)e−u2

du = −e−t2 . Hence,∫ ∞

2
√
ℓ

(2t)k−1e−t2dt = (4
√
ℓ)k−2e−4ℓ + 2(k − 2)

∫ ∞

2
√
ℓ

(2t)k−3e−t2dt.
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Unfolding the recurrence, we observe that as ℓ grows,
∫∞
2
√
ℓ
(2t)k−1e−t2dt is dominated by

(4
√
ℓ)k−1 which in turn is dominated by (2c

√
ℓ)k. Combining everything, it follows that for

every k ∈ N there exists a constant c ∈ R>0, up to renaming, such that E[λ−k∥S((L − zΛ −
iτIℓ)

−1 − F (τ)(z))∥k] ≤ cℓk/2.

The practicality of Lemma A.16 relies on the Lipschitz constant λ satisfying limℓ→∞ λ
√
ℓ =

0. Under this condition, we may prove Theorem A.3.

Theorem A.3 (Theorem 3.3 from the main text). Let τ ∈ R>0, z ∈ H and D(τ) be the
perturbation matrix in (33). Under Assumption 6, assume that the mapping g ∈ (Rγ , ∥ · ∥2) 7→
S((L(g)−zΛ− iτIℓ)

−1) ∈ (Cℓ×ℓ, ∥ ·∥2) is λ-Lipschitz with respect to the operator norm. Then,
there exists an absolute constant c ∈ R>0 such that

∥D(τ)∥ ≤ cτ−1
√
ℓλ+ τ−2∥S̃∥+ ∥∆(L, τ)∥.

Proof. By (38),

∥D(τ)∥ ≤ ∥E[S((L− zΛ− iτIℓ)
−1 − F (τ)(z))(L− zΛ− iτIℓ)

−1]∥

+ ∥E[S̃((L− zΛ− iτIℓ)
−1)(L− zΛ− iτIℓ)

−1]∥+ ∥∆(L, τ)∥.

By Jensen’s inequality, submultiplicativity of the operator norm, Lemma A.2 and Lemma A.16,

∥E[S((L− zΛ− iτIℓ)
−1 − F (τ)(z))(L− zΛ− iτIℓ)

−1]∥ ≤ cτ−1
√
ℓλ.

Similarly,
∥E[S̃((L− zΛ− iτIℓ)

−1)(L− zΛ− iτIℓ)
−1]∥ ≤ τ−2∥S̃∥

The theorem follows.

As a direct outcome of Theorem A.3, it follows that ∥D(τ)∥ tends towards zero as the
dimension ℓ approaches infinity under the conditions limℓ→∞

√
ℓλ = 0, limℓ→∞ ∥S̃∥ = 0 and

limℓ→∞ ∥∆(L, τ)∥ = 0 for every τ ∈ R>0 small enough. In our application to the test error of
random features ridge regression, we upper bound the Lipschitz constant λ in Theorem A.3 by
λ ≤ τ−2∥S∥F→2λC where ∥S∥F→2 denote the operator norm of the map S : (Cℓ×ℓ, ∥ · ∥F ) 7→
(Cℓ×ℓ, ∥ · ∥2) and λC is the Lipschitz constant associated with the map C : (Rγ , ∥ · ∥2) 7→
(Rℓ×ℓ, ∥ · ∥F ). Then, limℓ→∞

√
ℓλ = 0 follows from ∥S∥∥·∥F→∥·∥2

≲ ℓ−
1
2 and λC ≲ ℓ−

1
2 .

It is trivial to control ∥∆(L, τ)∥ when L has Gaussian entries. Alternatively, an interpolation
approach based on cumulant bounds in the spirit of [LP09, Proposition 3.1] appears to be a
suitable avenue to extend the result to other distributions. In Appendix B.2, we employ a
leave-one-out strategy to demonstrate that ∥∆(L, τ)∥ is vanishing in ℓ for every τ ∈ R>0.

The culmination of Theorem A.2 and Theorem A.3 along with these specified conditions
signifies that M(z) becomes a deterministic equivalent for the expected pseudo-resolvent E(L−
zΛ)−1 across all z ∈ H.

Corollary A.3. Let z ∈ H and λ be defined as in Theorem A.3. Under Assumptions 4 to 6,
suppose that limℓ→∞

√
ℓλ = limℓ→∞ ∥S̃∥ = limℓ→∞ ∥∆(L, τ)∥ = 0 for every τ ∈ R>0 small

enough. Then, ∥E(L− zΛ)−1 −M(z)∥ ℓ→∞−−−→ 0.

In certain scenarios, it is feasible to alleviate the reliance of Corollary A.3 on Assumption 6.
Notably, by employing a universality result such as the one presented in [BvH23, Lemma 6.11],
one may directly argue that certain functionals of resolvent of random matrices do not depend
on the distribution of the input.



Latourelle-Vigeant and Paquette/Correlated MDEs and test errors 51

The utilization of the operator norm in Theorem A.3 is a direct consequence of our previous
decision to work with the expected regularized pseudo-resolvent while deferring the concentra-
tion step. Intuitively, we anticipate that the expected pseudo-resolvent converges pointwise in
operator norm to the solution of the MDE. However, the concentration of the resolvent around
its expectation is typically only valid in the context of generalized trace entries.

A.5.2. Concentration

The only remaining task is to establish that the expected pseudo-resolvent is itself a determin-
istic equivalent for the true pseudo-resolvent — a widely acknowledged fact that stems from a
variety of methodologies. We present one such result, based on the assumptions used above.

Lemma A.17 (Lemma 3.2 from the main text). Let U ∈ Cℓ×ℓ with ∥U∥F ≤ 1 and assume
that the map g ∈ (Rγ , ∥ · ∥2) 7→ (L(g)− zΛ)−1 ∈ (Cℓ×ℓ, ∥ · ∥F ) is λ-Lipschitz with λ ≍ ℓ−r for

some r > 0. Under Assumption 6, tr(U((L− zΛ)−1 − E(L− zΛ)−1))
a.s.−−−→
ℓ→∞

0.

Proof. By Cauchy-Schwarz inequality, | trU((L(g1)−zΛ)−1−(L(g2)−zΛ)−1)| ≤ ∥U∥F ∥(L(g1)−
zΛ)−1 − (L(g2) − zΛ)−1∥F ≤ λ∥g1 − g2∥ for every g1, g2 ∈ Rγ . Hence, by Proposition A.2,
there exists absolute constants c1, c2 ∈ R>0 such that

P
(
tr
(
U
(
(L− zΛ)−1 − E(L− zΛ)−1

))
≥ t
)
≤ c1e

− c2t2

λ2 .

Assuming that λ2 ≤ c3ℓ
−r for some r ∈ R>0, we may take an infinite sum over ℓ and obtain

∞∑
ℓ=1

P
(
tr
(
U
(
(L− zΛ)−1 − E(L− zΛ)−1

))
≥ t
)
≤ c1

∞∑
ℓ=1

e−c4t
2ℓr < ∞

Thus, trU((L− zΛ)−1 − E(L− zΛ)−1) → 0 as ℓ → ∞ by Borel–Cantelli lemma.

Combining Corollary A.3 and Lemma A.17 through the utilization of Von Neumann’s trace
inequality, we derive the ensuing anisotropic law, presented here for the sake of comprehen-
siveness.

Corollary A.4. Under the settings of Corollary A.3 and lemma A.17, tr(U((L − zΛ)−1 −
M(z)))

a.s.−−−→
ℓ→∞

0 for every U ∈ Cℓ×ℓ with ∥U∥∗ ≤ 1.

Appendix B: Empirical test error of random features ridge regression

In this section of the supplement, we conclude the proof of our main theorem, which estab-
lishes an asymptotically exact expression for the empirical test error of random features ridge
regression. For a detailed presentation of the theorem and related discussions, we refer the
reader to the main paper. Within this supplement section, we first provide a brief recap of
the settings. Subsequently, we demonstrate that ∥∆(L, τ ; z)∥, as defined in (36), converges to
zero as n → ∞ for every regularization parameter τ ∈ R>0 (Lemma 4.1 from the main text).
Finally, leveraging the stability property of the matrix Dyson equation, we then establish that
Assumption 4 holds (Lemma 4.4 from the main text).
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B.1. Settings

Let A = n− 1
2σ(XW ) ∈ Rntrain×d, where X ∈ Rntrain×n0 is a deterministic matrix, W ∈ Rn0×d

is a random matrix, δ ∈ R>0 is the ridge parameter, and σ is a λσ-Lipschitz activation
function. Similarly, let Â = n− 1

2σ(X̂W ) ∈ Rntest×d, where X̂ ∈ Rntest×n0 is a deterministic
matrix. Following the setup of [LLC18], we assume that W = φ(Z) for some Z ∈ Rn0×d

with independent standard normal entries, and φ is a λφ-Lipschitz function. The Lipschitz
constants λσ and λφ are required to be independent of the problem dimension. As n → ∞
with ntrain ∝ ntest ∝ n0 ∝ d, we expect lim supn→∞(λφ ∨ λσ) < ∞. Additionally, we stipulate

that lim supn→∞ max{∥X∥, ∥X̂∥} < ∞ and similarly for the label vectors y and ŷ.

We assume that {(aTj , âTj )T }dj=1, representing the columns of A and Â, are i.i.d. random
vectors with

E[(aT1 , âT1 )T ] = 0 and E[(aT1 , âT1 )T (aT1 , âT1 )] =
[
KAAT KAÂT

KÂAT KÂÂT

]
.

Here, KAAT , KAÂT , KÂAT , and KÂÂT encode the covariance between the entries of A and

Â. In addition to assuming that the random features matrices A and Â are centered, we also
assume that both ∥A∥ and ∥Â∥ are bounded in L4.

To summarize, we make the following assumption throughout this section.

Assumption 7. Suppose that ntrain, d, ntest, n0 ∝ n and lim supn→∞ ∥X∥ ∨ ∥X̂∥ ∨ ∥y∥ ∨ ∥ŷ∥ ∨
E[∥A∥4] ∨ E[∥Â∥4] ∨ λσ ∨ λφ < ∞. Furthermore, suppose that A and Â are centered.

B.2. Proof of Lemma 4.1 from the main text

As part of the proof of our main theorem, we use our matrix Dyson equation framework to de-
rive an anisotropic global law for the pseudo-resolvent (L−zΛ)−1 with Λ := BlockDiag{Intrain+d, 02ntest×2ntest}
and linearization

L =


δIntrain

A 0ntrain×ntest
0ntrain×ntest

AT −Id×d 0d×ntest
ÂT

0ntest×ntrain 0ntest×d 0ntest×ntest −Intest

0ntest×ntrain Â −Intest 0ntest×ntest

 ∈ Rℓ×ℓ. (39)

In the application of our framework, it is crucial to demonstrate that ∥∆(L, τ ; z)∥, as defined
in (36), tends to zero as n → ∞ for every regularization parameter τ ∈ R>0. This task is the
focus of this section.

Fix z ∈ H, let {aj}dj=1, {âj}dj=1 denote the columns of A and Â respectively. Suppose

that lTj = (aTj , 0, 0, â
T
j ) and Lj = lje

T
ntrain+j + entrain+j l

T
j for every j ∈ {1, 2, . . . , d}, where

{ej}ℓj=1 is the canonical basis of Rℓ. In particular, we may write L = EL+
∑d

j=1 Lj . For every

j ∈ {1, 2, . . . , d}, let Pj ∈ Rℓ×ℓ be the orthogonal matrix permuting the first and ntrain + jth
entries exclusively and Cj ∈ R(ℓ−1)×(ℓ−1) be the matrix cycling from position ntrain + j − 1 to
1. For instance, if v = (vk)

ℓ−1
k=1, then

vTC−1
j = (v2, v3, . . . , vj−1, v1, vj , vj+1, . . . , vℓ−1).

We will rely heavily on a Schur complement decomposition of (PjLPj − zIℓ)
−1. For every

j ∈ {1, 2, . . . , d}, let l−j ∈ Rℓ−1 be obtained by removing the ntrain + jth entry of lj and
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L−j ∈ R(ℓ−1)×(ℓ−1) be obtained by removing the ntrain + jth columns and ntrain + jth row
from L. Define the scalar ξj := (1 + z + lT−j(L−j − zIℓ−1)

−1l−j)
−1 and the matrix

Ξj := Cj(L−j − zIℓ−1)
−1Cj − ξjCj(L−j − zIℓ−1)

−1lj l
T
j (L−j − zIℓ−1)

−1Cj .

We have the following block inversion formula.

Lemma B.1. For every j ∈ {1, 2, . . . , d} and z ∈ H,

(PjLPj − zIℓ)
−1 =

[
−ξj ξj l

T
−j(L−j − zIℓ−1)

−1Cj

ξjCj(L−j − zIℓ−1)
−1l−j Ξj

]
.

Proof. The lemma follows directly from the observation

PjLPj =

[
−1 lT−jC

−1
j

C−1
j l−j C−1

j L−jC
−1
j

]
and an application of the block matrix inversion lemma.

For every j ∈ {1, 2, . . . , d}, let qj = lT−jR−j l−j and R−j := (L−j − zIℓ)
−1. Concentration

of bilinear forms is a central ingredient of many random matrix theory proof. We obtain a
concentration result for qj by adapting [LLC18, Lemma 4].

Lemma B.2. Under Assumption 7, limn→∞ E[max1≤j≤d |qj − Eqj |2] = 0 for every z ∈ H.

Proof. Adapting [LLC18, Lemma 4], there exists some absolute constants c1, c2 ∈ R>0 such
that

P (|qj − Eqj | > t) ≤ c1e
−c2nmin{t,t2}

for every t ∈ R≥0. Then,

E[ max
1≤j≤d

|qj − Eqj |2] ≤ n− 1
2 +

∫ 1

n− 1
2

P( max
1≤j≤d

|qj − Eqj |2 > t)dt+

∫ ∞

1

P( max
1≤j≤d

|qj − Eqj |2 > t)dt

Using a union bound,∫ 1

n− 1
2

P( max
1≤j≤d

|qj − Eqj |2 > t)dt ≤ c1n

∫ 1

n− 1
2

e−c2ntdt =
c1
c2

(
e−c2

√
n − e−c2n

)
Also, ∫ ∞

1

P( max
1≤j≤d

|qj − Eqj |2 > t)dt ≤ c1n

∫ ∞

1

e−c2n
√
tdt = 2c1n

∫ ∞

1

te−c2ntdt

=
2c1
c2

e−c2n(1 +
1

c2n
)

Taking n → ∞ concludes the proof.

We need one additional tool in order to show universality, which we state here. We omit
the proof, as it follows directly from Hölder’s inequality.

Lemma B.3. If lim supn→∞ max{E[∥A∥4],E[∥Â∥4]} < ∞ then lim supn→∞ E[∥L − EL∥4] <
∞.
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We are ready to show universality.

Lemma B.4 (Lemma 4.1 from the main text). Fix z ∈ H and τ ∈ R>0. Under Assumption 7,
limℓ→∞ ∥∆(L, τ)∥ = 0.

Proof. For simplicity, we aim to demonstrate that limn→∞ ∥E[(L− EL)(L− zIℓ)
−1] + E[(L̃−

EL)(L − zIℓ)
−1(L̃ − EL)(L − zIℓ)

−1]∥ = 0 for every z ∈ H. This adjustment streamlines
notation without altering any steps in the proof. For every j ∈ {1, 2, . . . , d},

PjLjPj =

[
0 lT−jC

−1
j

C−1
j l−j 0

]
and, by Lemma B.1,

E
[
(L− EL)(L− zIℓ)

−1
]
=

d∑
j=1

PjE
[
PjLjPj(PjLPj − zIℓ)

−1
]
Pj

=

d∑
j=1

PjE
[
ξj l

T
−jR−j l−j lT−jR−jCj − ξj l

T
−jR−j l−j l

T
−jR−jCj

−ξjC
−1
j l−j ξjC

−1
j l−j l

T
−jR−jCj

]
Pj

=

d∑
j=1

PjE
[
ξj l

T
−jR−j l−j −ξj l

T
−jR−j l−j l

T
−jR−jCj

−ξjC
−1
j l−j ξjC

−1
j l−j l

T
−jR−jCj

]
Pj

where we recall that R−j = (L−j − zIℓ−1)
−1. On the other hand,

E
[
(L̃− EL)(L− zIℓ)

−1(L̃− EL)(L− zIℓ)
−1
]

=

d∑
j=1

PjE
[
PjL̃jPj(PjLPj − zIℓ)

−1PjL̃jPj(PjLPj − zIℓ)
−1
]
Pj

=

d∑
j=1

PjE

[
ξj l̃

T
−jR−j l−j l̃T−jR−jCj − ξj l̃

T
−jR−j l−j l

T
−jR−jCj

−ξjC
−1
j l̃−j ξjC

−1
j l̃−j l

T
−jR−jCj

]2
Pj .

Thus,

E
[
(L− EL)(L− zIℓ)

−1
]
+E

[
(L̃− EL)(L− zIℓ)

−1(L̃− EL)(L− zIℓ)
−1
]
=

d∑
j=1

PjE[ξjΨj ]Pj

where qj = lT−jR−j l−j , q̃j = l̃T−jR−j l̃−j , ρj = l̃T−jR−j l−j and

Ψj =

[
qj − q̃j + 2ξjρ

2
j ρj l̃

T
−jR−jCj − 2ξjρ

2
j l

T
−jR−jCj + (q̃j − qj)l

T
−jR−jCj

−2ξjρjC
−1
j l̃−j − C−1

j l−j C−1
j (l−j l

T
−j − l̃−j l̃

T
−j)R−jCj + 2ξjρjC

−1
j l̃−j l

T
−jR−jCj

]
.

We will consider the upper blocks of
∑d

j=1 PjE[ξjΨj ]Pj separately.
First, for the upper-left corner, the sum along with the permutation matrices Pj are simply

tiling the diagonal. Thus, we may use Cauchy-Schwarz inequality and Jensen’s inequality to
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obtain∥∥∥∥∥∥
d∑

j=1

PjE
[
ξj(qj − q̃j) + 2ξ2j ρ

2
j 0

0 0

]
Pj

∥∥∥∥∥∥ ≤ max
1≤j≤d

|E[ξj(qj − q̃j) + 2ξ2j ρ
2
j ]|

≤ 2

ℑ[z]
E[|q − q̃|] + 2|E[ξ21 lT−1R−1KR−1l−1]|

≤ 4

ℑ[z]
E[|q − Eq|] + 2E[∥L− EL∥2]∥K∥

(ℑ[z])4
.

Here, we introduced the correlation matrix K = E[l−1l
T
−1]. Using Jensen’s inequality and

Cauchy Schwarz,

∥K∥ ≤ ∥E[a1aT1 ]∥+ ∥E[â1aT1 ]∥+ ∥E[a1âT1 ]∥+ ∥E[â1âT1 ]∥

= d−1(∥E[AAT ]∥+ ∥E[ÂAT ]∥+ ∥E[AÂT ]∥+ ∥E[ÂÂT ]∥)

≤ d−1(E[∥A∥2] + 2

√
E[∥Â∥2]E[∥A∥2] + E[∥Â∥2]) ≲ d−1. (40)

Here, we used the fact that E[∥A∥2] and E[∥Â∥2] are bounded by assumption. Additionally,
by Lemma B.2, it is clear that E[|q − Eq|] → 0 as n → ∞.

We now turn our attention to the upper-right 1× (ℓ− 1) corner of
∑d

j=1 PjE[ξjΨj ]Pj . For

every unit vector x ∈ Cℓ,∥∥∥∥∥∥
d∑

j=1

PjE
[
0 ξjρj l̃

T
−jR−jCj − 2ξ2j ρ

2
j l

T
−jR−jCj + ξj(q̃j − qj)l

T
−jR−jCj

0 0

]
Pjx

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∥E

(
0 ξ1ρ1 l̃

T
−1R−1C1 − 2ξ21ρ

2
1l

T
−1R−1C1 + ξ1(q̃1 − q1)l

T
−1R−1C1

)
P1x

...(
0 ξdρd l̃

T
−dR−dCd − 2ξ2dρ

2
dl

T
−dR−dCd + ξd(q̃d − qd)l

T
−dR−dCd

)
Pdx


∥∥∥∥∥∥∥
2

≤
√
ℓ max
1≤j≤d

∥E[ξjρj l̃T−jR−j − 2ξ2j ρ
2
j l

T
−jR−j + ξj(q̃j − qj)l

T
−jR−j ]∥2.

On one hand, since

E[ξjρj l̃T−jR−j − 2ξ2j ρ
2
j l

T
−jR−j ] = E[ξj lT−jR−jKR−j − 2ξ2j l

T
−jR−jKR−j l−j l

T
−jR−j ]

and |ξj | ≤ (ℑ[z])−1,

max
1≤j≤d

∥E[ξjρj l̃T−jR−j − 2ξ2j ρ
2
j l

T
−jR−j ]∥ ≤ E[∥l−1∥]∥K∥

(ℑ[z])3
+

2E[∥l−1∥3]∥K∥
(ℑ[z])5

.

Furthermore, by Cauchy-Schwarz for complex random variables,

∥E[ξj(q̃j − qj)l
T
−jR−j ]∥2 = sup

∥y∥≤1

|E[ξj(q̃j − qj)l
T
−jR−jy]|

≤ (ℑ[z])−1 sup
∥y∥≤1

√
E[|q − q̃|2]E[|lT−jR−jy|2]

= (ℑ[z])−1 sup
∥y∥≤1

√
E[|q − q̃|2]E[y∗R∗

−jKR−jy]

≤
√
E[|q − q̃|2]∥K∥

(ℑ[z])2
.
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Combining everything, we obtain that the upper-right 1×(ℓ−1) corner of
∑d

j=1 PjE[ξjΨj ]Pj is

bounded, in norm, by
√
ℓE[∥l−1∥]∥K∥/(ℑ[z])3+2

√
ℓE[∥l−1∥3]∥K∥/(ℑ[z])5+

√
ℓE[|q − q̃|2]∥K∥/(ℑ[z])2.

We conclude that this bound vanishes as n increases using E[∥l−1∥] ≤ E[∥L− EL∥], (40) and
Lemma B.2.

We consider the two lower blocks together. For notational convenience, let

¯
Ψj =

[
0 0

−2ξjρjC
−1
j l̃−j − C−1

j l−j C−1
j (l−j l

T
−j − l̃−j l̃

T
−j)R−jCj + 2ξjρjC

−1
j l̃−j l

T
−jR−jCj

]
for every j ∈ JdK. Since we expect qj to concentrate around its mean, we write ξj = (1 + z +

qj)
−1 = (1 + z + Eqj)−1 +

Eqj−qj
(1+z+Eqj)ξj and

d∑
j=1

PjE[ξj
¯
Ψj ]Pj = (1 + z + Eq)−1

d∑
j=1

PjE[
¯
Ψj ]Pj − (1 + z + Eq)−1

d∑
j=1

PjE[(qj − Eqj)ξj
¯
Ψj ]Pj .

Using independence of R−j , l−j and l̃−j ,

E
¯
Ψj =

[
0 0

−2ξjC
−1
j KR−j l−j 2ξjC

−1
j KR−j l−j l

T
−jR−jCj

]
.

Using a similar argument as above,∥∥∥∥∥∥
d∑

j=1

PjE
[

0 0
−2ξjC

−1
j KR−j l−j 0

]
Pj

∥∥∥∥∥∥ ≤ 2
√
ℓE[∥l−1∥]∥K∥
(ℑ[z])2

n→∞−−−−→ 0.

Moreover, further decomposing the lower-right corner,

d∑
j=1

PjE
[
0 0
0 2ξjC

−1
j KR−j l−j l

T
−jR−jCj

]
Pj = (1 + z + Eq)−1

d∑
j=1

PjE
[
0 0
0 2C−1

j KR−jKR−jCj

]
Pj

− (1 + z + Eq)−1
d∑

j=1

PjE
[
0 0
0 2(qj − Eqj)ξjC−1

j KR−j l−j l
T
−jR−jCj

]
Pj

with |(1 + z + Eq)−1| ≤ (ℑ[z])−1,∥∥∥∥∥∥
d∑

j=1

PjE
[
0 0
0 2C−1

j KR−jKR−jCj

]
Pj

∥∥∥∥∥∥ ≤ 2d∥K∥2

(ℑ[z])2

and∥∥∥∥∥∥
d∑

j=1

PjE
[
0 0
0 2(qj − Eqj)ξjC−1

j KR−j l−j l
T
−jR−jCj

]
Pj

∥∥∥∥∥∥ ≤
2d∥K∥

√
E[|q − Eq|2]E[∥l−1∥4]

(ℑ[z])3
.

In particular, ∥(1 + z + Eq)−1
∑d

j=1 PjE[
¯
Ψj ]Pj∥

n→∞−−−−→ 0.
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It only remains to show that ∥(1+z+Eq)−1
∑d

j=1 PjE[(qj −Eqj)ξj
¯
Ψj ]Pj∥ vanishes. To this

end, we undo the decomposition and notice that

d∑
j=1

PjE[(qj − Eqj)ξj
¯
Ψj ]Pj = E

[
(
¯
L− E

¯
L)Ω(L− zIℓ)

−1
]

+ E
[
(˜̄L− E

¯
L)Ω(L− zIℓ)

−1(L̃− EL)(L− zIℓ)
−1
]

where

¯
L =


δIntrain

A 0 0
0 −Id×d 0 0
0 0 0 −Intest

0 Â −Intest 0


and

Ω = BlockDiag{0ntrain×ntrain
,Diag{qj − Eqj}dj=1, 02ntest×2ntest

}.

Using the bound ∥(L − zIℓ)
−1∥ ≤ (ℑ[z])−1, it follows from Jensen’s and Cauchy-Schwarz

inequalities that

∥∥E [(
¯
L− E

¯
L)Ω(L− zIℓ)

−1
]∥∥ ≤

√
E[∥L− EL∥2]E[max1≤j≤d |qj − Eqj |2]

ℑ[z]

and∥∥∥E [(˜̄L− E
¯
L)Ω(L− zIℓ)

−1(L̃− EL)(L− zIℓ)
−1
]∥∥∥ ≤

√
E[∥L− EL∥4]E[max1≤j≤d |qj − Eqj |2]

(ℑ[z])2
.

This term gives us the bottleneck conditions on the norm of the matrix L − EL and the
concentration of q around its mean. By Lemmas B.2 and B.3, both of the RHS bounds vanish
as n diverges to infinity.

Appendix C: Intermediate lemmas

This section introduces some small lemmas that are regularly used throughout this paper.

C.1. General matrix identities

Lemma C.1 (Resolvent trick). If W1,W2 ∈ Cℓ×ℓ are non-singular, W−1
1 −W−1

2 = W−1
1 (W2−

W1)W
−1
2 .

Proof. Multiply on the left by W1 and on the right by W2.

Lemma C.2. Let w ∈ C, W ∈ Cℓ×ℓ and assume that |w| ≥ a > b ≥ ∥W∥. Then, wIℓ −W is
non-singular and ∥(wIℓ −W )−1∥ ≤ (a− b)−1.

Proof. For any v ∈ Cℓ, we have ∥(wIℓ − W )v∥ ≥ ∥wv∥ − ∥Wv∥ ≥ (a − b)∥v∥. Therefore,
wIℓ −W is invertible. Letting v = (wIℓ −W )−1 gives the result.

Lemma C.3. For every commensurable matrices W1,W
T
2 ∈ Cn×d and z ∈ C \ {0} with

z /∈ σ (W1W2) ∪ σ (W2W1), W1(W2W1 − zId)
−1 = (W1W2 − zIn)

−1W1.
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Proof. Left-multiply the equation on both sides by W1W2−zIn and right-multiply by W2W1−
zIn.

Lemma C.4. For every z ∈ H and hermitian matrix H ∈ Rℓ×ℓ, ∥(H − zIℓ)
−1∥ ≤ (ℑ[z])−1.

C.1.1. Real and imaginary parts of matrices

A recurrent theme in this document is the use of matrix real and imaginary part. Given a matrix
W ∈ Cℓ×ℓ, we decomposeW = ℜ[W ]+iℑ[W ] where 2ℜ[W ] = W+W ∗ and 2iℑ[W ] = W−W ∗.

Lemma C.5. max{∥ℜ[W ]∥, ∥ℑ[W ]∥} ≤ ∥W∥ for every W ∈ Cℓ×ℓ.

Proof. Let v ∈ Cℓ be unitary. By Cauchy-Schwarz’s inequality, ∥Wv∥2 = ∥Wv∥2∥v∥2 ≥
|v∗Wv|2 = (v∗ℜ[W ]v)

2
+ (v∗ℑ[W ]v)

2
. Since both ℜ[W ] and ℑ[W ] are Hermitian by defi-

nition, sup∥v∥=1 |v∗ℜ[W ]v| = ∥ℜ[W ]∥ and sup∥v∥=1 |v∗ℑ[W ]v| = ∥ℑ[W ]∥ respectively, where
the supremum is taken over unitary vectors v ∈ C. Taking the supremum in the equation
above and using the definition of operator norm concludes the proof.

Corollary C.1. A matrix W ∈ Cℓ×ℓ is non-singular whenever either ℜ[W ] or ℑ[W ] is non-
singular.

Lemma C.6. Assume that W ∈ Cℓ×ℓ is invertible. Then, ℜ[W−1] = W−1ℜ[W ]W−∗ and
ℑ[W−1] = −W−1ℑ[W ]W−∗.

Proof. Write W = ℜ[W ]+ iℑ[W ]. By Lemma C.1 and the definition of matrix imaginary part,
2iℑ[W−1] = W−1 − W−∗ = W−1 (W ∗ −W )W−∗. Since W ∗ = ℜ[W ] − iℑ[W ], W ∗ − W =
−2iℑ[W ]. A similar argument applies to the real part.
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